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Abstract

Komolgorov, Arnold and Moser (KAM) theory provides that orbits of satellites whose

dynamics are representable by an integrable Hamiltonian plus a small, real perturbation

lie on tori in phase space and remain upon the KAM tori for all time, unless acted on by a

non-conservative force. A refined technique for constructing KAM tori for Earth-orbiting

satellites is developed and implemented using numerically integrated orbital data for hy-

pothetical satellites and involving methods of Fourier analysis and spectral decomposition.

Definition of satellite formations on the KAM tori is performed and analyses conducted to

investigate both constellations with large separations and clusters with small separations.

Cluster formations with physical secular drift rates on the order of nanometers to microm-

eters per second are obtained. A brief discussion of effects of non-conservative forces (such

as atmospheric drag) on KAM tori is given.
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FORMATION FLIGHT OF EARTH SATELLITES ON KAM TORI

I. Introduction

There is no question that the advent and utilization of Earth-orbiting satellites in the

last half century has afforded the human race unprecedented benefits and enhancements in

almost every aspect of its increasingly technologically-based existence. Among the facets

of modern humanity most profoundly affected by satellite-based technology are communi-

cations, navigation, surveillance and reconnaissance, geographic analysis and deep space

exploration.

1.1 Motivation

In many applications of satellite technology, the relative motion between two or more

separate entities orbiting about a primary body is increasingly vital. This has become all

the more apparent with the relatively recent focus on development and implementation of

small satellite or microsatellite formations – groups or systems of smaller, less expensive

satellites designed to perform or improve the function of a previous larger, more expensive

satellite – for scientific, commercial and military purposes.

Current methods of determining satellite relative motion and designing satellite con-

stellation orbits typically employ only estimates of the true orbital dynamics, to include

the two-body motion along with the harmonic terms of Earth’s gravitational potential to

perhaps degree/order m,n = 4 (see sections 2.1 and 2.2.1). While the truncation of the

potential is sometimes necessary due to computational complexity, especially during long

numerical integrations, it causes an increase in residual error over time due to the ignored

higher-order gravitational harmonic contributions, except in very specific cases. A definite

accuracy advantage could obviously be realized in orbit design if there exists a way of

describing more fully and accurately the flight dynamics of the satellite about the primary.
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1.2 Approach

In the course of this work, the author attempts to demonstrate that, using the con-

cepts and results of KAM theory, it is possible to significantly enhance the effectiveness of

satellite formation orbit design. This stems in large part from the fact that one can achieve

a better representation of the true dynamics of a satellite’s orbit by using KAM theory.

According to the Kolmogorov, Arnold and Moser (KAM) theorem, the solution of a near-

integrable Hamiltonian system will lie on an invariant torus in the phase space ([1],[8],[15]).

In the case of Earth-orbiting satellites, if one assumes that the only perturbations away

from the integrable two-body problem (2BP) experienced in the orbit stem from Earth’s

gravitational field harmonics (i.e. that nonconservative perturbations and non-primary

potential effects such as third-body interactions are zero), it has been demonstrated that

the satellite’s motion may indeed lie on a so-called KAM torus for both observed satellite

data and integrated orbital data ([24], [25],[11]).

This work will proceed by first demonstrating the determination of KAM tori repre-

senting various Earth satellite orbits in the presence of the Earth’s extended gravitational

potential. This will be accomplished using techniques based upon those outlined in previ-

ous works by Laskar in [9],[10] and Wiesel in [24],[25] . The application of KAM theory to

satellite formation flight will then be investigated by exploring satellite relative dynamics

on calculated KAM tori.

1.3 Problem Statement

Given the previously demonstrated strong probability of the existence of a KAM

torus upon which each satellite’s orbit is constrained, the application of KAM theory to

satellite formation flight naturally arises. If the dynamics of earth orbits are indeed accu-

rately represented by KAM tori, the investigation of the relative motion of two individual

satellites constrained to separate but proximate locations on the same KAM torus should

demonstrate acceptably small secular drift between the bodies during orbital propagation.
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1.4 Results

The current work demonstrates that KAM tori may be constructed to represent orbits

with unprecedented accuracy given certain constraints and accurate enough trajectory

information. Additionally, largely separated formations of satellites with secular drifts on

the order of 0.5 percent of the original separation distance over 10 days are demonstrated for

multiple orbit altitude and inclination combinations under the influence of the geopotential

expansion to order and degree 20. Tight formations analyses yield secular drift rates

between satellites on the order of 4 nanometers to 1 micrometer per second.
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II. Background

This chapter will briefly investigate the current methods of analysis of satellite forma-

tions/constellations. Then, exposition of the major perturbations experienced by satellites

in Earth orbit will be given. A description and short history of KAM theory will be pro-

vided. Finally, the chapter will end with an introductory explanation of the formulation

of the dynamics used throughout the rest of the work.

2.1 Satellite Formations and Relative Motion

One of the first methods developed for the description of satellite relative motion,

and that which is predominantly used in the design of rendezvous missions and satellite

formations, involves using the Hill-Clohessy-Wiltshire (HCW) equations, created originally

for the Gemini Program [2]. These equations are given in the relative frame as

ẍ− 2ωẏ − 3ω2x = fx (2.1)

ÿ + 2ωẋ = fy (2.2)

z̈ + ω2z = fz (2.3)

where x, y and z are the coordinates in the target-centric frame, ω is the orbital angular

velocity of the chief satellite (which is equivalent to the mean motion n in this circular

case) and the fn are external forces [19]. These equations are the result of the investigation

of the relative motion between a ‘chief’ (or ‘target’) spacecraft and a ‘deputy’ (or ‘chaser’)

spacecraft, after ignoring nonlinear gravity terms and assuming the chief is in a circular

orbit [19].

In their original form, the HCW equations provide an acceptable depiction of space-

craft relative motion to first order when the satellites in question are relatively close to

one another. It is commonly known that the most potent perturbative effect not included

in these linearized HCW equations is due to the terms in the geopotential expansion con-

taining potential forces higher than zeroth order two-body motion. There have been a

variety of techniques used to combat this source of error, ranging from designing orbit

constellations which are essentially invariant to higher-order geopotential terms [17] to
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modifying the HCW equations to include the higher-order terms to some degree, usually

only including the coarsest oblateness effect, or J2 zonal harmonic term (c.f. §2.2.1 for a

more detailed explanation of the geopotential field’s effects). Some missions, such as the

canceled USAF TECHSAT 21, were to use formations that were “close enough” to remain

within the linear regime of the HCW equations [12]. Modified versions of the HCW equa-

tions, including both Earth J2 harmonic effects and nonlinear differential gravity effects,

have been developed (as in [6],[18]) and applied to obtain better approximations over larger

separating distances and have allowed for more efficient orbital designs – i.e. orbit designs

which require fewer on-orbit corrections (and, thus, less fuel) to stay within certain relative

position constraints. However, it is certainly preferable, if the possibility exists, to more

accurately represent the true dynamics of the satellites’ respective motions around the

primary. This would enable the ‘capture’ of all nuances of the primary’s influence which

would cause secular growth in the separation between the orbiting bodies.

2.2 Perturbations in Earth-orbit

Satellites in orbit around the Earth experience a number of perturbations which

tend to force their dynamics away from those which can be precisely described by typical

Keplerian two-body motion. The types of perturbations which are dominant depend upon

the altitude of the satellite above the Earth’s surface. Objects in low-Earth orbit (LEO - up

to about 800 km altitude) mostly experience conservative perturbative forces due to Earth’s

nonsphericity, along with the non-conservative force due to atmospheric drag. Conversely,

objects in mid-Earth orbit (MEO – 800km to 30,000km altitude) and geosynchronous orbit

(GEO – 35,780km altitude) experience relatively little perturbative force from Earth’s

nonsphericity, as the Keplerian term dominates at high radii, and relatively little resistive

force from atmospheric drag, which falls off exponentially with altitude. Rather, as a

satellite’s altitude increases, its perturbations away from Keplerian become dominated by

third-body effects from the Sun and Moon and by the non-conservative force imparted

by as solar radiation pressure. This thesis will focus solely on satellites in LEO and

mainly upon the effects of the geopotential, although atmospheric drag will be discussed

in brief; hence, the dynamics of bodies in MEO, GEO and above are beyond the scope
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of this thesis; however, the methodology developed and applied here may be extended to

arbitrary potential fields which meet the KAM criteria as mentioned below and in Chapter

III, and would hence, in theory, be applicable to Earth orbit classes including third body

effects, given adequate trajectory knowledge.

2.2.1 The Earth’s Geopotential. This subsection provides a general overview of

the geopotential field through discussion of the terms in the geopotential expansion. For

a full treatment of the geopotential, c.f [19] and [23].

The derivation of the geopotential expansion around a solid body may begin with

the familiar Poisson’s equation for the gravitational potential V :

∇2V = 4πGρ (2.4)

where G is the gravitational constant, ρ is the density of the body and ∇2 = ∇ · ∇ is the

standard Laplacian operator. After evaluating Poisson’s equation in spherical coordinates

(c.f. [23]) for positions outside of the gravitating body, the potential becomes

V = −µ
r

∞∑
n=0

n∑
m=0

(
r

R⊕
)−nPmn (sinδ) [Cnmcos(mλ) + Snmsin(mλ)] (2.5)

which is termed the “expansion of the geopotential in spherical harmonics”, and in which

µ is the gravitational parameter, r is the radius of the satellite from the Earth’s center, R⊕

is the radius of the Earth, n and m are the degre and order of the expansion (respectively),

Pmn are the associated Legendre polynomials, Cnm and Snm are the gravity field coefficients

given by an Earth-gravity model, δ is the geocentric latitude and λ is the east longitude.

The potential given in Eq. (2.5) may be most intuitively considered as a combination of

three types of effects: zonal, sectoral and tesseral harmonics.

2.2.1.1 Zonal Harmonics. Zonal harmonics are encountered when order m

= 0 and 1 ≤ n ≤ nmax. The first zonal harmonic, n = 1, has the effect of moving the

center of mass of the geoid north or south; as such, it is not usually included in Earth

geopotential models, since we desire the center of our coordinate system to coincide with
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the center of mass. The first nonzero zonal harmonic term, then, occurs when n = 2; this

term accounts for the direct oblateness (or equatorial bulge) of the Earth due to its spin

about the 3-axis. The potential associated with n = 2, m = 0 then assumes the form

V20 =
µR2
⊕J2

2r3
(3cos2θ − 1), (2.6)

where J2 is the C20 coefficient, with a value ≈ 0.001082. This effect is the second largest

in magnitude, with a value of approximately one thousandth of the Newtonian potential

term −µ
r (where n,m = 0). Increasing the order while maintaining a zero degree repre-

sents zonal harmonic functions with successively more “nodes”, which in turn allows for

the increasingly refined modeling of mass distribution irregularities. This idea of zonal

harmonics is shown pictorially in Figure (2.1), with both side and top views, for n = [2, 6].

2.2.1.2 Sectoral Harmonics. The sectoral harmonics describe the effect

that occurs when n = m. The associated Legendre polynomials Pnn [sin(δ)] have zeros

only when δ = ±π, i.e. when the satellite is over the poles. The field terms cos(mλ)

and sin(mλ) are zero at 2m lines of longitude λ around the geoid; hence, the sectoral

harmonics divide the globe into slices, much like a typical beach ball’s colored panels. The

n,m = 1 term is set to zero, since it has the effect, as the analogous term in the zonal

harmonics, of shifting the planet’s center of mass away from the center of our coordinate

frame. The C22, S22 sectoral harmonic then separates the earth into four slices: two slices

opposite each other with higher potential and two slices opposite each other with lower

potential. As was the case regarding the zonal harmonics, increasing the order and degree

divides the Earth into higher and higher “resolution” slices. Figure (2.2) shows sectoral

harmonics for n,m = 2 and n,m = 3.

2.2.1.3 Tesseral Harmonics. Tesseral harmonics refer to the “off-diagonal,”

non-zonal terms: those determined by n 6= m, where n,m > 0. The potential contributions

from tesseral harmonics are due to mass distribution differences manifested in a tiled or

grid pattern. In general, much as before, the higher the degree and order of the expansion,
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Figure 2.1. Depiction of Zonal Harmonics (from ref. [19]).

Figure 2.2. Depiction of Sectoral Harmonics (from ref. [19]).

Figure 2.3. Depiction of Tesseral Harmonics (from ref. [19]).
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the ‘finer’ the grid and the higher the resolution of the gravitic model. Figure (2.3) shows

representative examples of tesseral harmonics for m = 3, 4 and n = [1, 3].

2.2.1.4 Earth Gravity Model. To obtain a usable geopotential expansion,

the Cnm and Snm coefficients must be empirically determined. This has been accomplished

using satellites instrumented with highly accurate equipment capable of detecting and doc-

umenting very small perturbations in the satellites’ motion due to differential gravity forces.

Such a set of coefficients is termed a gravity model. The current standard gravity model,

complete to order and degree 360, is called the Earth Gravity Model of 1996 (EGM96)

[19]. The EGM96 is highly accurate and has been augmented and verified using data from

multiple satellites. Although the model includes terms up to order/degree 360, the current

work uses only terms to m,n = 20 in order to decrease computational burden while still

maintaining very high accuracy; recall the steep decline of the potential magnitude as order

and degree increase.

2.2.2 Orbital Atmospheric Drag. As mentioned above, the main source of dynam-

ical perturbation for satellites in LEO aside from the Earth’s nonsphericity is atmospheric

drag. The current work is concentrated on the KAM tori resulting from the conservative

perturbations due to the geopotential; thus, only a brief discussion of the drag effects and

their associated inclusion into KAM theory will be given.

Atmospheric drag manifests as a non-conservative force on a satellite, in a direction

opposing that of the satellite’s velocity vector and with a magnitude which depends on

several key physical parameters of the satellite and its altitude. A standard form of the

drag force equation on a satellite is given as

f̄d = −1
2
CdAρ

∣∣V̄rel∣∣ V̄rel (2.7)

where Cd is the drag coefficient of the satellite, A is its cross-sectional area, ρ is the

atmospheric density at the position of the satellite and V̄rel is the velocity of the satellite

relative to the local atmosphere. Often, however, it is convenient to rewrite the drag effect
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as an acceleration, rather than a force:

ād = −1
2
ρ

β

∣∣V̄rel∣∣ V̄rel (2.8)

In Eq. (2.8), β is known as the ballistic coefficient and is given in terms of the above

parameters and the satellite mass m by

β =
m

CdA
(2.9)

so that a larger ballistic coefficient is, of course, preferable when possible, since it reduces

the overall effect of drag on the orbiting vehicle.

The drag force on a satellite is often one of the most difficult aspects of the dynamics

to predict, largely because of the density term, ρ. The density varies not only with altitude

but can vacillate wildly with respect to solar activity; that is, in periods of maximum solar

flux, the atmosphere reaches a state of excitement in which the atmosphere can expand

to encompass a much larger volume and hence leads to a greater apparent density at any

particular altitude.

The effects of drag on a satellite orbit can be quite profound. In the case of a satellite

with an elliptical orbit, increased drag at its periapsis will cause a lowering of the apoapsis

altitude in an effect termed “circularization,” with only a slight lowering of the periapsis

altitude. This phenomenon will continue until the orbit is virtually circular, at which

time the semi-major axis a will continue to decrease, lowering the orbital altitude until the

satellite disintegrates or impacts the planet’s surface. Figure (2.4) below shows the lifetime

of an example 320km altitude orbit inclined at i = 30◦ with a nearly zero eccentricity, for a

satellite with a ballistic coefficient of β ≈ 318 (corresponding to m = 500kg, A ≈ 0.785m2

and Cd = 2; see §4.3 for more detailed discussion regarding inclusion of drag in numerical

integration). The reason for the nonlinear decline after a certain point in the orbit’s decay is

due to a simple aerodynamic phenomenon: as the atmospheric density grows exponentially

with descent, the drag force bleeds energy from the system and causes the satellite to lower

ever faster until impact .
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Figure 2.4. Example of orbital decay due to atmospheric drag for a nearly circular orbit
at 320km, i = 30◦

Certain of the orbits examined in the current work are circular with initial altitudes

on the order of 320km. The author notes that satellites in such orbits will not, without

further boosting, have lifetimes significant enough to apply KAM theorem. However, they

are utilized in the current work because, with respect to KAM modeling in the conservative

perturbations, they represent a sort of “upper bound”- i.e. a satellite at 320km will be

experiencing the full effect of the geopotential perturbations; thus, it stands to reason that

if such a “worst case” can be accurately modeled using KAM theorem while ignoring drag,

it should be possible to extend the methodology to less perturbed, higher altitude orbits

with no loss of accuracy. See Chapters III and IV for details regarding the methodology

and results for varying orbit parameters.

2.3 KAM Theory

The theorem posited by Kolmogorov [8], and later proved by Arnold [1] and Moser

[15] possesses the possibility for far-reaching application in classical mechanics. Celletti

and Chierchia have shown that KAM theory serves to adequately describe the dynamics of

celestial bodies [3] and have also applied it to the dynamics of the Sun-Jupiter-Victoria sys-
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tem, which is a Restricted, Circular, Planar Three Body Problem (RCPTBP) [4]. McGill

and Binney have demonstrated development of KAM tori to model dynamical systems in

generalized potentials with promising results, as in [13]. Kaasalainen and Binney have

shown KAM torus development in Stäckel potentials and in loop and box orbits [7]. Ad-

ditionally, KAM theory has been utilized in the field of quantum mechanics to describe

the motion of particles in magnetic potentials, such as those experienced in a particle

accelerator (c.f. [5], [20],[21] and [22]).

KAM theory has newly been applied to Earth-orbiting satellites by Wiesel in [24] and

[25] and Little in [11]. Wiesel demonstrated a least-squares method for obtaining KAM tori

from numerically integrated data in [24], where he showed the torus construction for an

Earth satellite, and later a refined method using Fourier analysis in [25], where he showed

the construction of a torus for a restricted three body problem resembling the Earth-Moon

system. Little employed observed data from the GRACE and Jason-1 satellites to show

that Earth satellites likely lie on KAM tori [11].

As mentioned in §1.2, KAM theory, at its core, concerns the dynamical behavior of

a system describable as an integrable Hamiltonian subject to some small perturbation; i.e.

Hε(I, ϕ) = H0(I) + εH1(I, ϕ) (2.10)

where Hε is the perturbed Hamiltonian, I and ϕ are the coordinates in an Action-Angle

representation, H0 is the integrable Hamiltonian, H1 is the perturbing Hamiltonian and ε

is some small, real value. H0 and H1 must be smooth, real-analytic functions. According

to KAM theory, the motion of a body in a system which satisfies these conditions will lie

on a torus in the system’s phase space; i.e. the motion is ‘constrained’ to some locus of

points in the phase space. The dimension of the torus depends upon the number of degrees

of freedom of the system: Hamilton-Jacobi theorem mandates that, for a Hamiltonian with

N degrees of freedom, the associated KAM torus is N -dimensional and occupies a phase

space of 2N dimensions.
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2.3.1 On The Visualization of Tori. One may think of tori topologically as the

products of circles; i.e.:

Tn = S1 × S1 × . . .× S1︸ ︷︷ ︸
n

(2.11)

where S is a topological space which is the subspace
{

(x1, x2) ∈ R2 : x2
1 + x2

2 = 1
}

of R2.

Tori of dimensions 1 and 2 are then rather easily visualized; a 1-torus is simply a circle

– a 1-dimensional torus existing in 2-dimensional space. For example, T1 is depicted in

Figure (2.5) below. The 2-torus, then, is a shape similar to a donut: a 2-dimensional torus

existing in 4-dimensional space, for one needs four parameters to define a point on its

surface- two actions Ik and two angles ϕk (c.f. figure (2.6)). KAM tori manifest in shapes

topologically similar to this when one examines systems with two degrees of freedom, such

as the restricted three-body problem.

Figure 2.5. Example of a 1-torus.

Tori of higher dimensions (Tn, n ≥ 3) are much more difficult for us to visualize,

and so we must be satisfied with describing them almost entirely in the language of math-

ematics. However, one can obtain a very basic idea of system behavior by investigating

higher-dimensional tori using a method loosely reminiscent of Henri Poincare’s well-known

“method of sections:” in the case of an invariant 3-torus (such as those examined in the

current work), if one ignores one of the angle coordinates and its associated action, one

can obtain a two-dimensional “projection” of the 3-torus in the form of 2-torus. Of course,
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Figure 2.6. Top(left) and perspective (right) views of a 2-torus.

the amount of information one gains from such an exercise is only useful insomuch as it

provides a very general idea of torus action proportions and frequency trends. Shown

below in Figure 2.7 is such a 2-torus “projection” obtained during the present work for a

KAM 3-torus of an Earth-orbiting satellite, where the smallest frequency and its associated

action are ignored.

Figure 2.7. Example of a 2-toroidal “projection” of the KAM 3-torus for an Earth-
orbiting satellite.
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2.4 Dynamics Formulation

In order to choose an appropriate coordinate frame in which to formulate the system

dynamics and construct KAM tori, one must strive to find the frame which affords the

largest number of integrals of the motion. In the general case (posed in Cartesian coordi-

nates in an inertial frame) of a satellite moving in Earth’s full potential field, there are no

integrals of the motion readily available. However, we may find a constant of the motion

in this case by choosing a frame which rotates with the Earth- namely, the Earth-centered

rotating frame, also called the Earth-centered, Earth-fixed (ECEF) frame, in which the

1-axis points from the center of the earth through the intersection of prime meridian and

the equator, the 3-axis points along the axis of rotation, and the 2-axis completes the

right-handed orthonormal basis. In the ECEF frame, the elements of nonsphericity which

cause the differential gravitational contributions in the Earth’s potential are fixed; i.e., the

position vector of a specific infinitesimal piece of the Earth’s mass will always remain con-

stant. We take advantage of this fortunate fact to greatly simplify our equations of motion.

We begin our Hamiltonian formulation, following Wiesel [24], by writing the expressions

for the specific momenta pn as

px = ẋ− ω⊕y (2.12)

py = ẏ + ω⊕x (2.13)

pz = ż (2.14)

where x, y and z are the coordinates of the satellite in the ECEF frame and ω⊕ is the

angular rate of rotation of the Earth. We may then find the Lagrangian for the system

L = T − V (2.15)

where T and V are the kinetic and potential energies, respectively. We can use the La-

grangian to calculate the Hamiltonian using:

H =
∑
i

piq̇i − L (2.16)
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After substituting the appropriate expressions for kinetic and potential energies, the Hamil-

tonian may be written in its final form

H =
1
2

(p2
x + p2

y + p2
z) + ω⊕(ypx − xpy)

−µ
r

∞∑
n=0

n∑
m=0

(
r

R⊕
)−nPmn (sinδ)

× [Cnmcos(mλ) + Snmsin(mλ)] (2.17)

where µ is the gravitational parameter, r is the radius of the satellite from the Earth’s

center, R⊕ is the radius of the Earth, Pmn are the associated Legendre polynomials and Cnm

and Snm are the gravity field coefficients given by an Earth-gravity model, as described in

the previous section. The radius r, the geocentric latitude δ and the east longitude λ of

the satellite may be found by elementary geometry to be:

r =
√
x2 + y2 + z2

sinδ =
z√

x2 + y2

tanλ =
y

x
(2.18)

After following the above method, we may obtain the one achievable constant of the motion

in this problem: the Hamiltonian. Again we note that this approach includes only the

potential perturbations and ignores all non-conservative forces.

Throughout this work, a variety of units and constants are used in calculations and

resulting displays. Most of the units are common, such as the standard degree, radian,

meter and kilometer. A few are not quite so usual, such as the time unit (TU) and the

Earth radius (ER). The values of these units and of assorted constants used throughout

16



this work are listed below [19]. Minutes and seconds given are in solar time.

1 TU = 13.446852 min

1 ER = 6378.137 km

ω⊕ = 0.0588335998 rad/TU

µ⊕ = 398600.4418
km3

s2
= 1 ER3/TU2
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III. Method

The core of utilizing KAM theory for orbital mechanics lies in calculating the KAM tori for

orbits in question. This chapter will begin with a discussion of the process of application

of KAM theorem to satellite orbits. It will then proceed with details of the methods used

to obtain the requisite propagated orbital data. Finally, an explication of methodology

used for formation analysis on the torus will take place.

3.1 Describing Orbits as KAM Tori

As mentioned before, the KAM torus for an Earth satellite exists as a 3-torus in

6-space in terms of three angle variables and their associated actions. However, in order

to use orbital data to gain any utility from the concept of a KAM torus, we must find a

formulation of the torus which involves the physical coordinates. Ideally, what we would

seek is a map

M : (q, p)→ (I, ϕ) (3.1)

which would allow us ultimately to find the torus actions Ik and angles ϕk, having as the

input a state containing the physical coordinates qk and momenta pk. Unfortunately, there

does not seem to exist so simple a homeomorphism between the physical space and torus

space. To circumvent this problem, we must obtain the states at a number of points along

the orbital path (through satellite observation or numerical propagation) and perform an

analysis upon these data to find two separate types of information: the fundamental or

basis frequencies with which the system oscillates (which are related to the torus angle

variables along with their temporal development) and the amplitudes with which each of

the frequencies and combinations thereof manifest in the orbital motion (related to the

torus actions). In an isoenergetic system (one where the only forces are conservative, or

potential, forces), the torus actions I will be constant – indeed, one of the beauties of

representing the dynamics as a torus is that the Ik are constant and the ϕk increment

linearly with time. What is found through the below method, in fact, is the reverse of the

map described above, manifested as a series involving torus parameters used to calculate

physical coordinates and then their associated momenta.
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3.1.1 KAM Series Representation. According to KAM theorem and Hamilton-

Jacobi theorem, a nearly integrable system of 3 degrees of freedom (such as that in the

current problem) should also have three fundamental frequencies, which, it has been es-

tablished, are intimately related to the representative angle coordinates of the tori. Due to

the conservative and nearly integrable nature of this system, and since we seek a function

that is periodic in the angle variables ϕk, it is natural to seek a representation of the orbit

coordinates as a Fourier series:

q̄
(
Ī , ϕ̄

)
=
∑
j̄

D̄j

(
Ī
)
eij̄·ϕ̄ (3.2)

Again, what we work to find through frequency analysis will be the complex series coeffi-

cients D̄j and their associated frequency combinations j̄ · ϕ̄. The ϕk can be described using

the basis frequencies and time t through

ϕk = Ωkt+ ϕk0 (3.3)

where Ωk is the kth fundamental frequency and ϕk0 is the initial kth angle value (ϕk at

t = 0). In Eqn. 3.2, each j̄ is a vector of integers, which, when the inner product j̄ · ϕ̄

is taken, allows for specification of integer combinations of the different basis frequency

contributions. The details and mechanics of this will be discussed below.

3.1.2 Spectral Analysis. The problem of finding the basis frequencies for an orbit

is best solved using a method similar to that of Laskar as given in [9] and [10], known

as the Numerical Algorithm of the Fundamental Frequency (NAFF). Per Laskar, we may

take the finite fourier transform of coordinate data f(t) at a frequency ω by

φ(ω) =
1

2T

∫ T

−T
f(t)e−iωtχ(t, T )dt (3.4)

Laskar’s method is obviously quite similar to normal Fourier analysis, but uses instead a

weight or window function χ(t) to circumvent accuracy losses caused by the fact that the

orbital data f(t) is likely not truncated perfectly to contain an integer number of periods

19



over the time span [−T, T ]. The aforementioned losses are due to a phenomenon known

as frequency leakage- c.f. §3.1.2.2.

3.1.2.1 The Power Spectral Density. The goal of Laskar’s method, when

searching for a basis frequency, is to find the maximum of Eqn (3.4) in the neighborhood

of a rough initial guess of the basis frequency in question. This, in essence, allows for the

determination of the frequency value (accurate to within computational uncertainties) at

which the spectral power is the highest. The spectral power, defined as P = |φ|2, is the

most common way to quantify contributions from different frequencies inherent in a signal.

A plot of the power values for a range of frequencies, or spectrum, is aptly termed a Power

Spectral Density (PSD) plot and is a useful way of rather intuitively examining the periodic

characteristics of the signal. An example of a PSD plot for an orbit is shown in Figure

(3.1) below. By simple observation, it is obvious for a non-chaotic orbit that there are a

number of peaks in the PSD at various frequencies. These power peaks correspond, in the

case of our perturbed orbit data “signal”, to combinations of the three basis frequencies.
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Figure 3.1. Example of Power Spectral Density plot of an orbit for ω = [0, π] with
window power p = 2.
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3.1.2.2 Window Function and Window Power. The window function used

in the current work for χ(t, T ) in Eqn. (3.4) is known as the Hanning window, and is given

by

χ(t, T ) =
2p (p!)2

(2p)!

[
1 + cos

(
πt

T

)]p
(3.5)

where p is the window power and t and T are the current time step and the end time,

respectively, as discussed above. Essentially, this window function serves to “smooth” the

ends of the data set so that the values taper down to zero with varying speeds (related to

the values of p). Such a tapering of the data eliminates the frequency leakage mentioned

above by eliminating the discontinuity encountered if one “ties” the beginning and end of

the data set together and treats it as one continuous periodic system. Laskar demonstrates

efficient use of the Hanning window with powers of 3−5 and states that powers above p = 5

tend to decrease accuracy [9]; Wiesel [24] and Little [11] use p = 2 almost exclusively. The

author has found in the current work that a general statement about appropriate values

for p cannot be made; that is, the choice of power depends upon the accuracy of the signal

data, the length of the signal sampling period and the “stiffness” of the dynamics (related,

in this case, to the order and degree of the geopotential expansion considered), among

other factors. Wiesel shows an instructive example of the effects on the PSD of a spectral

line by increasing window powers in [25]; essentially, as one increases the value of p, the

values of the sidelobes around the spectral line fall off more and more quickly, with the

potential sacrifice of frequency accuracy due to the broadening of the true frequency’s peak

in the PSD. See, for example, Figure (3.2) below. As in Wiesel, a value of p = 2 is a good

general-purpose power; however, as mentioned by Laskar [9], it is advantageous to explore

higher window powers until accuracy gains cease. In the current work, a power p = 2

proved sufficient for analysis of orbit integrations including n,m ≤ 5; however, for 1-year

integrations with n,m = 20, gains in accuracy of the fundamental frequencies continued

in some cases up to p = 7, allowing the Ωk to be determined to within an error of a few

parts in 1012.

3.1.2.3 Fourier Coefficients. As previously mentioned, the torus actions Ik

are indirectly reflected in the complex Fourier coefficients D̄j in Eqn. (3.2). It is sometimes
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Figure 3.2. Effects on the PSD for a spectral line of ω = 0.057 rad from increasing
Hanning window power p in Eqn.(3.5)- based on example from Wiesel, [25]

advantageous to rewrite the series (3.2) in real form as

q̄ (t) =
∑
j̄

[
C̄j̄cos (j̄ · ϕ̄) + S̄j̄sin (j̄ · ϕ̄)

]
(3.6)

so that we seek, from our spectral analysis, the coefficients Cj̄k and Sj̄k , obtainable from

Eqn. (3.4) by

Ck = 2<φ
(
ωj̄
)

(3.7)

Sk = 2=φ
(
ωj̄
)

(3.8)

where ωj̄ is the frequency combination (or the PSD bin associated with the j̄ in question),

calculated with

ωj̄ = j̄ · Ω̄ (3.9)

The constant term for each coordinate, C0k
, may be found by evaluating Eqns. (3.7) and

(3.8) with ω = 0.
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3.1.2.4 Spectral Decomposition. Finding the values of the Fourier coef-

ficients mentioned in §3.1.2.3 has proven to be somewhat of an art. The author of the

current work has found that simple Fourier analysis, i.e. obtaining the amplitudes of the

spectral peaks per Eqns. (3.7) and (3.8), is only effective to a certain accuracy level due to

two phenomena: spectral “shadowing” and frequency folding. Spectral shadowing occurs

when one is dealing with a system where there is one very small frequency among the basis

frequency set; i.e.

∃ (Ωm,Ωn) ∈ Ω̄ | Ωm � Ωn, m 6= n (3.10)

where the frequency proportion considered “small” depends upon the accuracy of the signal

data and computational precision. The effect this has on the spectral analysis can be quite

profound, because when one is analyzing the amplitudes of integer combinations of the

elements of Ω̄, there will be circumstances in which one is interested in some frequency

combination involving the largest frequency plus or minus the smallest frequency; for

example, in a [not uncommon] case where we have an index and basis frequency set such

that

j̄ = [1 0 1] (3.11)

Ω̄ = [0.98 0.060 0.0018] rad/s (3.12)

we would then then be seeking the amplitude of a frequency

ωj = j̄ · Ω̄

= 0.9818

In this case, the power of the basis frequency at Ω1 = 0.98 will almost certainly have

a higher amplitude than ωj , and since ωj is so near to Ω1, it will be very difficult to

distinguish the true value of the amplitude at ωj . This issue is even further exacerbated

when using a window function, which, as mentioned above in §3.1.2.2 and shown in Fig.

(3.2), has the effect of widening the peak, thus further obscuring the contributions of any

frequencies in near proximity.
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The second malicious effect, and an issue inherent in any practical signal analysis

application, is frequency folding, which involves the “reflection” of spectral peaks about

the Nyquist frequency or Nyquist limit,

ωNyquist =
π

tsample
(3.13)

where tsample is the sampling time interval of the [orbital] signal data. For example,

consider the simple periodic function

X(t) = sin(ν0t) (3.14)

where the frequency of oscillation ν0 = 0.55 rad/TU and we obtain “propagation” data for

times t = [−T : δt : T ], where we take T = 8000 TU and δt = 0.5 TU . The PSD for this

case after Fourier transform per Eqn. (3.4) is shown in Fig. (3.3) over the Fourier domain

ω = [0, 4π]; it is clear that the frequency domain representation of this function is merely a

single spectral line at ω = ν0. The reader is invited to notice, however, the aforementioned

frequency folding manifested here: the signal in question has a Nyquist frequency of

ωNyquist =
π

tsample
= 2π (3.15)

and it is easily seen that there are reflections evident in the PSD plot over the given

domain. One “false” peak occurs at ωr1 = ωNyquist − ν0, one at ωr2 = ωNyquist + ν0 and

one at ωr3 = 2ωNyquist − ν0. The pattern of false peaks thus established continues on

ad infinitum as one examines the powers of higher and higher frequencies. In general,

however, we are only interested in those frequencies at or below ωNyquist, as the Nyquist

frequency represents the highest frequency that can be accurately sampled. We are left,

then, with the issue of the reflection peak at ωr1 = ωNyquist − ν0, since it poses a problem

when we are trying to determine powers of the real frequency combinations inherent in the

dynamical system.

Conveniently, it seems that the solution to both the spectral shadowing and fre-

quency folding problems lies in a spectral decomposition method. Spectral decomposition
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Figure 3.3. PSD of a spectral line at ν0 = 0.55 rad/TU and sampling time δt = 0.5 TU
demonstrating frequency folding.

consists of proceeding through the spectral content of a signal, starting with the frequency

combination having the largest power P(ω), and removing the signal contribution of each

spectral line before proceeding to the next highest. In essence, if one considers the fre-

quencies and their associated powers composing the spectrum of a signal, organized into a

set,

W = [ω1, ω2, . . . , ωm] | P(ωn+1) < P(ωn) (3.16)

where m is the total number of frequencies to be analyzed in the spectrum, the spectral

decomposition process proceeds iteratively through W to find the complex amplitudes φn

using the equation

φn = φ(ωn) =
1

2T

∫ T

−T
fn(t)e−iωntχ(t, T )dt (3.17)

where fn(t) represents the “decomposed” orbital signal data, having removed from the

original data f0 the contributions of all frequencies ω < ωn in W; that is,

fn(t) = f0(t)−
n−1∑
h=1

Dhe
iωt (3.18)
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In the case of spectral shadowing, the use of this decomposition method allows the analyst

to distinguish the separate contributions from two proximate frequencies with a much

higher accuracy than is possible with mere Fourier analysis. In the case of frequency

folding, spectral decomposition may be applied with one important caveat: in all cases

observed so far by this author, the “true” peak will have a higher power in the PSD than

any of its dependent reflections under ωNyquist; that is,

P(ωrn) < P(ν0) ∀ωrn < ωNyquist (3.19)

This is evident in Fig. (3.3) when comparing the peak at ν0 to the peak at ωr1 = ωNyquist−

ν0. This relationship betwen the powers of a frequency and its reflections allows the analyst

to use the iterative process given in Eqns. (3.17) and (3.18), since the conditions on W as

given in Eqn. (3.16) are met. In essence, after one removes the contribution of the true

peak at ω = ν0, the reflection peaks disappear from the remaining signal and cause no

further confusion in determination of peaks and their frequencies.

3.1.2.5 Fourier Indices. The spectral analysis process outlined in the above

sections requires, upon mechanization in a numerical routine, a somewhat unusual consid-

eration regarding the integer indices j̄ = j1 + j2 + j3. Following Wiesel [25], the current

work utilizes an index coding strategy in which the first non-zero term in j̄ is never nega-

tive; this precaution serves to eliminate repetition due to the nature of negative arguments

in trigonometric functions- namely, sin(−x) = −sin(x) and cos(−x) = cos(x).

3.1.3 Nature of the Basis Frequencies. The fundamental frequencies manifest

as combinations of the frequencies of commonly observed effects in Earth orbit [24]. The

first and largest fundamental frequency is known as the anomalistic frequency and is given

approximately by

ω1 ≈
√
µ

a3

{
1−

3J2R
2
⊕

2a2(1− e2)3/2

(
3
2
sin2i− 1

)}
(3.20)

where a is the semi-major axis, e is the orbital eccentricity, i is the orbital inclination and

J2, R⊕ and µ are as given previously in Chapter II, and where only effects of the first
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zonal harmonic are included (hence its approximate nature). It is clear that this is the

largest frequency due to its containing the Keplerian (or two-body) frequency (also the

mean motion in our circular case),

ωTB =
√
µ

a3
(3.21)

as its first term. The second fundamental frequency is the combination of the earth’s

rotational frequency with the orbit’s nodal regression rate:

ω2 ≈ ω⊕ +
3
√
µJ2R

2
⊕

2a7/2(1− e2)2
cos(i) (3.22)

The nodal regression rate in this equation refers to the tendency of the orbital plane

to rotate about the primary’s Earth-centered inertial (ECI) frame’s 3-axis due to the

oblateness of the primary, most easily seen as a secular change in the angle between the

inertial 1-axis and the line of nodes. The third, final and smallest fundamental frequency

is found to be the apsidal regression rate:

ω3 ≈ −
3
√
µJ2R

2
⊕

2a7/2(1− e2)2

(
sin2i− 2

)
(3.23)

which accounts for the tendency of the orbit to rotate within its own plane about the orbit

normal; this manifests as a secular change in the argument of perigee used in the classical

orbital elements.

Depicted in Figures (3.4)-(3.6) below are the relationships between the fundamental

frequencies (as approximated by Eqns. (3.20)-(3.23)) and the inclination i and altitude

for nearly circular orbits (e ≈ 0.00108). The first basis frequency Ω1, shown in Fig. (3.4),

shows the expected behavior in that the anomalistic frequency should decrease in value

as the orbit increases in altitude, which is a direct corollary of Eqn. (3.21) above. Addi-

tionally, for a given altitude, the first basis frequency decreases slightly as the inclination

of the orbit increases. This follows from Eqn. (3.20), as the total contribution from the

second term depends on sin(i), and the magnitude is thus fully subtracted when i = 90◦.
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Figure 3.4. Behavior of Ω1 for a near-circular orbit with varying altitudes and inclina-
tions.

Figure (3.5) shows that Ω2 decreases in value for increasing altitude; again, this

follows logically from the fact that the difference between the true geopotential and the

two-body potential decreases as radius increases. The figure also demonstrates the well-

known behavior of the orbits’ nodal regression rates; these rates decrease nonlinearly as

the orbit inclinations increase, so that the nodal regression is a maximum at i = 0◦ and

is zero at i = 90◦, in agreement with Eqn. (3.22). It is important to note that the

frequency shown along the vertical axis of Fig. (3.5) is, as stated above, the combination

of the earth’s rotation rate ω⊕ = 0.0588336rad/TU with the nodal regression; this explains

why the fundamental frequency tends towards ω⊕ as i → 90◦. Also of note is that the

nodal behavior for retrograde orbits (orbits with i > 90◦) is not shown in Fig. (3.5). For

retrograde orbits, the nodal regression rate becomes negative, which means that the orbit

precesses westward rather than eastward as in prograde orbits.

The third basis frequency, Ω3, depicted in Fig. (3.6), shows another commonly

characterized and utilized orbital trend. This apsidal regression rate has a so-called critical

inclination at i∗ ≈ 63.4◦; that is, the argument of perigee essentially does not grow secularly
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Figure 3.5. Behavior of Ω2 for a near-circular orbit with varying altitudes and inclina-
tions.

for an orbit at this inclination. A common historical usage of the critical inclination

has been the Molniya orbit used by the former USSR and now Russia in order to allow

maximum coverage of the northern hemisphere by a satellite with a highly elliptic orbit (c.f.

[19] for more details). Figure (3.6) also shows the relationship of the apsidal regression rate

of circular orbits to varying altitude and inclination when i 6= i∗. When i < i∗, increasing

altitude decreases the regression frequency, whereas the opposite is true for i > i∗.

The fundamental frequencies described in the equations and plots of this section

represent, again, merely approximations of the true frequencies of the system, as they

include only the J2 term of the geopotential expansion. In order to find the true values

of the basis frequencies, frequency analysis must be utilized on the propagated orbital

data including the other geopotential terms using the methodology outlined earlier in this

chapter.
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Figure 3.6. Behavior of Ω3 for a near-circular orbit with varying altitudes and inclina-
tions.

3.2 Orbital Propagation

The principles of §3.1 make it clear that the beginning of KAM torus construction

lies in the acquisition of orbital data in some fashion. Judging from the literature, there has

been considerable success in this area. As mentioned in Chapter II, Little has demonstrated

fitting of KAM tori to observed orbital data for Earth satellites with reasonable accuracy

[11]. Additionally, Wiesel has demonstrated incontrovertible evidence that a general Earth

satellite lies on a KAM torus through the least-squares fitting of numerically integrated

data [24] and also shown the fitting of numerical data for the restricted three-body problem,

a system with 2 degrees of freedom, using an improved method of Fourier Analysis [25].

The current work builds upon the methodology used by Wiesel and Little and extends it

to formation design.

3.2.1 Equations of Motion. Orbital data for the orbit examined in the current

work are obtained through numerical integration of the equations of motion derived from

the Hamiltonian derived in Chapter II with orbit geometry determined by judicious choice

of initial conditions. The equations of motion may easily be derived from the Hamiltonian
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by:

q̇k =
∂H

∂pk

ṗk = −∂H
∂qk

(3.24)

The derivative of the state vector at any position then becomes, after substitution and

differentiation,

˙̄ξ(q, p) = [q̇ ṗ]T =



p1 + ω⊕q2

p2 − ω⊕q1

p3

ω⊕p2 − ∂U(q̄)
∂q1

ω⊕p1 − ∂U(q̄)
∂q2

−∂U(q̄)
∂q3


(3.25)

where U(q̄) represents the potential function at position q̄ (as described in Ch. II), which

implies that its derivative represents the geopotential force upon the satellite.

3.2.2 Numerical Integrator. The numerical integration for this work was per-

formed using an explicit 8th order Runge-Kutta integrator, based upon that given by

Dorman and Prince in [16], which performs 13 evaluations per time step and has a local

error of order h9. This integrator, like the Hamming integrator used by Wiesel in [24] and

by Little in [11], is not symplectic; that is, it does not explicitly conserve the Hamiltonian

(this system’s constant of the motion). This fact allows for us to ‘check’ the accuracy of

the integrator by calculating at every output time step the error value

∆H = H(t)−H(t0) (3.26)

and ensuring that this difference has remained suitably small. Figure (3.7) below shows

the error growth for an archetypal numerical integration of an orbit at 320 km altitude,

inclined at 30 degrees, over a total time period of approximately 1 year and including all

geopotential terms up to order and degree m,n = 20. As seen in the figure, the error
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for this typical case shows pseudorandom behavior with maximum amplitude near the

accuracy bounds of machine double precision at approximately 4 × 10−13, establishing

a high confidence in the accuracy of the integration results. Figure (3.8) shows the same

Hamiltonian error array after the application of the Hanning window (Eqn. (3.5)) with p =

6. This represents the apparent error seen by the spectral analysis algorithm. Comparison

of the two figures reveals two important realizations: first, the maximum error is decreased

from approximately 4× 10−13 to approximately 2.4× 10−13; second, the tradeoff comes in

that the local error closer to the center of the windowed data set is slightly higher than

the associated error in the unwindowed data.
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Figure 3.7. Example of Hamiltonian error over integration time of approx. 1 year for
an Earth orbit with m,n = 20, 320km altitude, 30 deg inclination.

3.2.3 Integration Characteristics. The method of spectral analysis (and thereby

KAM torus construction) outlined above requires integrated data with certain characteris-

tics to function properly and with the desired accuracy. First, the integration time must be

symmetrically split around t = 0; that is, the final set of data consists of a backwards inte-

gration over the timescale −T ≤ t ≤ 0 combined with a forward integration over 0 < t ≤ T ,

consistent with Eqn. (3.4). This formulation, as described in [9] and [25] allows the user to
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Figure 3.8. Hamiltonian error as in Fig. (3.7) after application of a window function
with p = 6, per Eqn. (3.5).

take advantage of the finite accuracy available from any real-world numerical integration,

as the total error growth over the interval [0, T ] is (in these and similar systems) smaller

than the error growth over the interval [0, 2T ]. Second, and unfortunately, the method

of KAM torus construction as it currently stands requires integration of long periods of

orbital data (large T ) with very fine temporal resolution in the outputs (small δt).

3.3 Formation Analysis on the Torus

Using KAM theorem to design a satellite formation or constellation requires, of

course, that the designer obtain the KAM torus for a particular orbit by applying the

methodology previously outlined in this chapter (§3.1) to orbital data, either observed or

integrated (per §3.2). After the torus series given in Eqns. (3.2) and (3.6) is known in terms

of the series coefficients Cj̄k and Sj̄k and the basis frequencies Ωk, the astrodynamicist can

displace the initial condition of a satellite while constraining it to the same torus by using

the equation:

ϕ∗k = ϕk + δϕk (3.27)
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where ϕk is the kth angle variable as defined in Eqn. (3.3). In effect, Eqn. (3.27) serves

to replace each ϕk with a new ϕ∗k, perturbed by some KAM displacement angle δϕk. The

displacement manifests in the KAM series as

q̄ (t) = C̄0 +
∑
j̄

[
C̄j̄cos (j̄ · {ϕ̄+ δϕ̄}) + S̄j̄sin (j̄ · {ϕ̄+ δϕ̄})

]
= C̄0 +

∑
j̄

[
C̄j̄cos (j̄ · ϕ̄+ j̄ · δϕ̄) + S̄j̄sin (j̄ · ϕ̄+ j̄ · δϕ̄)

]
(3.28)

Eqn. (3.28) describes in general terms a new state at time t with the aforementioned

displacement. What we usually seek in formation design, however, is initial conditions

for two satellites in physical coordinates, (q̄, p̄), which will allow for the desired relative

motion. We may use Eqn. (3.6) to find the initial coordinates for some Satellite 1 at an

initial time t0 = 0 simply by:

q̄S1(t0) = C̄0 +
∑
j̄

C̄j̄ (3.29)

Given some initial desired KAM angular separation vector δϕ̄ between the satellites, the

initial coordinates for Satellite 2 may be found from Eqn. (3.28) as

q̄S2(t0) = C̄0 +
∑
j̄

[
C̄j̄cos (j̄ · δϕ̄) + S̄j̄sin (j̄ · δϕ̄)

]
(3.30)

In order to find the initial values of the momenta for satellites 1 and 2 from the series, we

realize that, for a satellite Sn in the ECEF frame [25],

p̄Sn(t) = R2 ˙̄qSn(t) +R1 q̄Sn(t) (3.31)

where R2 is the identity matrix I3×3 and

R1 =


0 −ω⊕ 0

ω⊕ 0 0

0 0 0

 (3.32)
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The values of ˙̄qSn(t) in Eqn. (3.31) may be found from the series (3.6) by simply differen-

tiating with respect to time, so that

˙̄q (t) =
∑
j̄

[
−(j̄ · Ω̄)C̄j̄sin

(
j̄ · Ω̄t

)
+ (j̄ · Ω̄)S̄j̄cos

(
j̄ · Ω̄t

)]
(3.33)

For a description of the implementation of the above process, continue to the next chapter.
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IV. Results and Findings

This chapter will present some of the results of the current work. It will begin with the

outcomes of the KAM torus fitting process for various orbits, including an analysis of

accuracy gains as a function of the number of KAM series terms included. Next, the

nature of satellite separations in the torus angles ϕk will be discussed, followed by the

results of the actual satellite formation analyses. Finally, a brief sketch on the effects on

KAM tori of non-conservative forces will be given.

4.1 KAM Torus Fitting

This section shows results from the process of fitting KAM tori to integrated data

of four satellite orbits which are combinations of two altitudes (320 km and 630 km)

and two inclinations (i = 15◦, 30◦,) . The orbits were chosen as representative orbits of

common Earth satellites and serve to demonstrate the method in question. The method

may, of course, be generalized (within certain bounds) to obtain KAM tori for a much

greater range of orbit altitudes and inclinations. The intricacies of the KAM tori for the

examined orbits show definite patterns, thus allowing the analyst to make useful statements

about the general case. It is, however, beyond the scope of this work to complete a full

survey of KAM tori for all possible inclination/altitude combinations, as the fitting and

decomposition process can be quite time-consuming and computationally intensive.

4.1.1 Torus series terms and accuracy gains. When fitting KAM tori to orbital

data, the issue of how far to extend the approximation naturally arises. While, in general,

including more terms in the series given by Eqn. (3.6) tends to increase the accuracy of

results, a point is reached similar to that encountered in other approximation analyses

where the dynamicist encounters the law of diminishing returns – that is, there is a certain

number of terms for each orbit after which gains in accuracy come extremely slowly, if at

all. In an effort to numerically characterize the relationship between the number of Fourier

series terms and the accuracy of an orbit reconstructed from the series, the following

procedure was utilized. First, the orbit for a satellite at a specific altitude/inclination

combination was numerically integrated to obtain approximately 12 months of orbital data
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with a windowed integration error similar in order to that shown in Figure (3.8). Then,

the basis frequencies are determined to a very high accuracy using an appropriate window

function, as in Chapter III. Next, a first-pass KAM torus approximation was calculated by

using Laskar’s and Wiesel’s methods of Fourier analysis, using a certain index limit vector.

This approximation gives us a good starting-point for the future spectral decomposition, as

it identifies the locations of the highest peaks. Also, one may use this torus approximation

as a check to determine whether or not the index limits are sufficient to capture the spectral

behavior of the dynamics: finding the power spectral density plot of the orbit “calculated”

from the approximate series and then comparing that PSD to the PSD calculated from

the “true”, integrated orbital data supplies the analyst with critical knowledge of missing

peaks. For an example of this, see Fig. (4.1) below; in this figure, the red curve represents

the partial PSD of the integrated (“true”) data and the blue curve represents the partial

PSD of the orbit constructed using the fitted torus series with index limits j̄lim = [5, 5, 1].

The black diamonds in the figure show the locations of the frequency combinations included

in the analysis – i.e., combinations of the basis frequencies up to the limits in j̄lim. In this

case, the basis frequency set was determined to be Ω ≈ [0.93243, 0.060025, 0.0018922]. The

figure clearly shows that the largest peaks in this partial frequency window occur at the

combinations of Ωk (e.g. the peak at ω ≈ 0.874 is the combination ω = Ω1−Ω2, etc.). It is

also clear that, due to the limitations of the series indices included, there are peaks that are

“missed” in the analysis. Please note that this j̄lim is merely an example case and does not

represent a typical index limit to obtain a highly accurate KAM torus. For informational

purposes, the coordinate residuals for the approximate torus determined with these index

limits as compared to the integrated data are given in Fig. (4.2) below.

After finding the approximate torus series, we may input said calculated series along

with the original orbital data into the spectral decomposition routine, where the signal

is decomposed into its true frequency contributions up to some maximum series term

limit. The resulting “refined” series provides a much higher accuracy than the approximate

Fourier analysis can, and we may use the series to investigate the title question of this

subsection: how the accuracy depends on the number of series terms. We proceed to

reconstruct orbital data from the KAM series by calculating the coordinates and momenta
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Figure 4.2. Residuals of fitting 320 km, i = 30◦ orbit with approximate series found by
j̄lim = [5, 5, 1]
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at every time t using Eqns. (3.6), (3.31) and (3.33) and the Ωk, C̄j̄ and S̄j̄ from the refined

series. These calculations may be conveniently performed to include any number of the

terms analyzed in the spectral decomposition; the results of the 12-month RMS residuals

for each coordinate are shown versus the number of included series terms in Fig. (4.3)

below. The orbit is the same 320km, 30◦ orbit discussed above, but the KAM fitting was
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Figure 4.3. Coordinate RMS residuals over 1 year vs. number of series terms for 320km,
30◦ orbit

performed with j̄lim = [20, 25, 2] to obtain frequency combinations up to the Nyquist limit.

To be clear regarding convention, the “number of series terms” in the figures below refers

not to the j̄lim, but rather is related to the number of terms included from the ordered set

W of frequency combinations discussed in §3.1.2.4. The “number of series terms” in the

plots specifically refers to the number of C and S coefficients used and is calculated from

the number of frequency combinations as

Nterms = 2Nω (4.1)

since there are two trigonometric coefficients for each frequency combination (i.e. a real

and imaginary part of each complex amplitude). The RMS residuals for each coordinate
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are determined in the usual fashion as

rRMSk
=

√√√√ 1
M

M∑
m=1

qk(tm) (4.2)

Similarly, the RMS errors in the momenta for the aforementioned 320km, 30 degree orbit

can be seen in Figure (4.4). It is easily seen from Figs. (4.3) and (4.4) that, for the
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Figure 4.4. Momentum RMS residuals over 1 year vs. number of series terms for 320km,
30◦ orbit

orbit examined, there is little relative accuracy gain after approximately 1500 terms in the

momenta and after approximately 2000 terms in the coordinates. It is instructive to note

that, as mentioned previously, 1500 terms correspond to roughly N/2 or 750 frequency

combinations; similarly, 2000 terms correspond to 1000 frequency combinations.

Extension of this methodology to an orbit of 630 km and i = 30◦ gives the expected

result: a higher altitude orbit is affected less by the geopotential perturbations, and may

thus be represented to the maximum possible accuracy by fewer terms than the equivalent

low-altitude case. Figures (4.5) and (4.6) below show the RMS residuals for the coordinates

and momenta, respectively, for the 630 km orbit over a period of 1 year. As seen in the
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figures, the accuracy reaches its steady state after approximately 1200 terms (600 sets of

C and S coefficients) in both the coordinates and momenta.
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Figure 4.5. Coordinate RMS residuals over 1 year vs. number of series terms for 630km,
30◦ orbit

It is important to note that, in the torus construction process utilized in this work,

the accuracy of the calculated momenta is always lower than that of their associated

coordinates. This is due to the fact that the error in the momenta is a compound error

composed of the errors of the coordinates qk and the coordinate’s derivatives q̇k, as is

obvious from cursory examination of Equations (3.31) and (3.33).
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Figure 4.6. Momentum RMS residuals over 1 year vs. number of series terms for 630km,
30◦ orbit

4.1.2 Orbit 1: Nearly circular, 320km Altitude and i = 30◦. The first orbit,

involving an altitude of 320km and an inclination of 30◦, is mentioned extensively in the

previous subsection and is used in this work as a sort of base orbit. As stated above,

the satellite’s motion for orbit 1 was integrated per the methodology in Chapter III over

a period of time [−T, T ] where T ≈ 6 months, yielding a total integration period of

approximately twelve months, or one year. Following the integration, a first-pass torus

was constructed and then the data were spectrally decomposed using the method out-

lined in Chapter III and §4.1.1 above. The residuals were then found by subtracting

the “calculated” steps using the KAM series at each time step from the “true” states of

the integrated orbit. Figures (4.7) and (4.8) below show the coordinate and momentum

residuals for the 320km, i = 30◦ orbit before and after decomposition; i.e. with only the

first-pass torus approximation (Fig. (4.7)) and with the more accurate decomposed torus

(Fig. (4.8)). The torus used to obtain the residuals in the figures uses maximum index

limits j̄lim = [20, 25, 2]. We note that the q2 residuals in Fig (4.7) are not visible because

they are practically equivalent to and, therefore, occluded by the q1 curve.
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Figure 4.7. Coordinate and momentum residuals over 1 year before spectral decompo-
sition for nearly circular, 320km, 30◦ orbit
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Figure 4.8. Coordinate and momentum residuals over 1 year after spectral decomposi-
tion for nearly circular, 320km, 30◦ orbit

4.1.3 Orbit 2: Nearly circular, 320km Altitude and i = 15◦. An orbit at the

same 320km altitude but at i = 15◦ was analyzed to obtain the coordinate and momentum

residuals in the below Fig. (4.9). With the lower inclination, the orbit proved to be

much more easily analyzed. The coordinate residuals without any decomposition were

practically identical to those shown in the figure; however, the decomposition improved

the momentum residuals by several orders of magnitude. The series was decomposed to

only 1400 terms in this case. There is an evident demonstrated trend towards generally

easier calculation of tori with lower inclinations – see §5.1.1 Limitations and considerations

in the KAM fitting process in Chapter V.
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Figure 4.9. Coordinate and momentum residuals over 1 year after spectral decomposi-
tion for nearly circular, 320km, 15◦ orbit

4.1.4 Orbit 3: Nearly circular, 630km Altitude and i = 30◦. The third orbit

used throughout the rest of this work is an orbit at an altitude of 630km and i = 30◦,

and its residuals are displayed in Fig. (4.10). The residuals are generally about 1/3 the

magnitude of those of the 320km orbit at the same inclination. It is the opinion of the

author that this is a result of the orbit’s higher altitude, which allows it to experience less

of the perturbation from the geopotential.
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Figure 4.10. Coordinate and momentum residuals over 1 year after spectral decomposi-
tion for nearly circular, 630km, 30◦ orbit

4.1.5 Orbit 4: Nearly circular, 630km Altitude and i = 15◦. The final orbit, at

630km and i = 15◦, shows an unexpected result in that the residuals (shown in Fig. (4.11))
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are along the same order as those of the higher inclination orbit at the same altitude. It is

believed that the potential perturbations are just subtle enough at 630km that the KAM

torus construction process is limited by the computational accuracy of the integration,

which would account for the similar magnitudes between the orbits at the two different

inclinations.
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Figure 4.11. Coordinate and momentum residuals over 1 year after spectral decomposi-
tion for nearly circular, 630km, 15◦ orbit

4.1.6 Torus actions and their constancy. Since we have, by following the method-

ology outlined in this paper, ostensibly constructed tori in the Action-angle space (I, ϕ),

a logical check is to calculate and examine the torus actions I. As mentioned in Chapter

III, the torus actions should be constant for a system with only conservative perturba-

tions. When one has in hand the torus parameters, the actions may be found using the

Hamilton-Jacobi theorem (see e.g. [25], [14]) by the contour integral

Ii =
1

2π

∮
Γi

p̄ · dq̄ (4.3)
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where p̄ is the vector of the momenta as found by Eqn. (3.31) and the differential dq̄ for

contour Γi is found by

dq̄ =
δq̄

δϕi
dϕi

=
∑
j̄

[
−(j̄)C̄j̄sin (j̄ · ϕ̄t) + (j̄)S̄j̄cos (j̄ · ϕ̄t)

]
(4.4)

To check the constancy of the actions, the above integral was taken over the full 2π range

of ϕ1 and ϕ2 for the 320km, 30◦ orbit; specifically, the action was calculated using Eq.

(4.4) around each irreducible contour Γi at 20 equally spaced locations around the torus

(in intervals of π/10 from ϕ1, ϕ2 = [0, 2π]). Figure (4.12) below shows the result of the

action calculations at these locations. The plot clearly shows that the torus actions are

constant to within computational uncertainty. The graphical representation also shows the

proportions of the actionsf: the two actions corresponding to the angles ϕ1, ϕ2 are four to

five orders of magnitude greater than the action corresponding to ϕ3. Indeed, these are

the same action proportions used to construct the 3-toroidal “projection” into 2-toroidal

space, given in Figure (2.7) in §2.3.1.
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orbit
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4.2 Satellite formations as KAM torus angle displacements

This section will give the nature and results of formation flight on the KAM tori.

First, a description of the interpretation of torus angle displacements will be given, followed

by the results of a survey of satellite drift after such separations. Then, the results of a

more focused study on tight formations will be discussed.

4.2.1 Nature of ϕk displacements. To create a formation of two satellites, we

choose a reference satellite in an orbit which lies on the torus and then create a second

satellite whose orbit also lies on the torus, but separate it from the reference satellite by a

change in one or more of the torus angles ϕk, per §3.3. Since, as mentioned in the section

entitled On the visualization of tori, the torus space for 3-tori such as these are not easily

intuitive, it is instructive to investigate the manifestations of torus-surface displacements in

cartesian space. The following subsections give a short exposition of how these separations

in the ϕk may, when possible, be interpreted in a physical sense.

4.2.1.1 Displacements in ϕ1. Displacements in the torus angle ϕ1 are

perhaps the most intuitive and correspond to separations in the largest basis frequency,

Ω1. Following the discussion in Chapter III regarding the interpretations of the basis

frequencies (c.f. §3.1.3), this ϕ1 separation is, in physical space, roughly equivalent to a

separation along the orbital path in the plane of the orbit. Figure (4.13) below displays an

example of displacement along ϕ1. In the figure, the coordinate frame is the Earth-centered

inertial frame. The blue X represents the starting position of the reference “chief” satellite,

the red X is the starting position of the displaced “deputy” satellite, and the blue and red

lines represent the trajectories of the reference and displaced satellites, respectively. For

demonstration purposes, the two satellites are propagated for less than one orbit to clearly

show the initial separation.

4.2.1.2 Displacements in ϕ2. Separations purely in the second torus angle,

ϕ2, manifest in the physical space as a rotation of the orbit plane itself around the ECI

3-axis, concordant with the discussion in §3.1.3; in other words, inducing a separation in ϕ2

is to effectively “force” the regression of the node through a certain amount before placing
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Figure 4.13. Inertial trajectories of satellites after separation of 2π/3 in ϕ1

the second satellite. Figure (4.14) shows 3D plots of such a separation of magnitude pi/4

in the ECI frame: the left plot of Fig (4.14) gives a perspective view, while the right plot

displays a “top-down” view, in which the angular separation of the lines of nodes for the

two satellites is obvious. (Note: Although the orbits appear elliptical in the top view in

Fig (4.14), they are in fact circular and inclined, which creates an elliptical projection on

the ECI X-Y plane.) It is important to note that, regardless of the separation amount, the

satellites’ trajectories still lie on the same torus if they are created using the same KAM

series.
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Figure 4.14. Two views of inertial trajectories of satellites after separation of pi/4 in ϕ2
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4.2.1.3 Displacements in ϕ3. The third torus angle is arguably the most

difficult to intuit and, since the magnitude of the third fundamental frequency Ω3 is so

small, is the most susceptible to modeling errors and is hardest to account for. Recall from

§3.1.3 that the third fundamental frequency in our case, Ω3, is representative of a motion

akin to the apsidal regression rate. Since the orbits considered in this work are nearly, but

not exactly, circular (meaning there is still some effective eccentricity), rotation through

the third torus angle have the effect in physical space of displacement in the orbit’s plane

in a small ellipse with axes proportional to the residual eccentricity of the orbit. Figure

(4.15) shows the inertial positions of the displacements resulting from varying ϕ3 over the

interval [0, 2π], in the case of a 320km, i = 30◦ orbit where the eccentricity e ≈ 0.0013.

The blue X marks represent the displacements after each equal increment of π/10 in ϕ3

up to 2π. We note again that this figure is not an orbit itself, but rather for displacements

in starting position from the reference (ϕ3 = 0), marked with the red star in the figure.
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Figure 4.15. Inertial displacements for ϕ3 = [0, 2π] manifested in physical space for a
320km, 30◦ orbit with e ≈ 0.0013

4.2.2 Formation drift survey after initial toroidal angular displacements ϕk. To

begin the formation analysis, the separation drift of satellites was examined for varying
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separations purely in the angles ϕk, as characterized in the previous section. As an example

of the results, consider the case case involving ϕ1 separations in the 320km, 30◦ orbit.

Figures (4.16) and (4.17) show the magnitude of the satellites’ relative distance minus the

original separation distance over time for several different initial separation amounts. The

initial separation listed at the top of each subplot is the direct distance from one satellite to

the other found by subtracting the position vectors of the satellites at time t0-this should

not to be confused with the arc distance. The separation angle given for each subplot is

in terms of ϕ1 angle, which is what leads to the initial separation distance. Again, the

distance given on the y-axis in the figures is the distance obtained by taking the magnitude

of the vector from one satellite to the other at each time and then subtracting the initial

separation vector magnitude. These figures clearly show a result which proved to be

predominant throughout this work; it appears that when satellites are put into formation

according to KAM torus angles, there are two main results: an oscillation in the satellite

separation proportional to the initial separation between the satellites and a secular drift

to some extent. In many cases, especially when investigating separations in ϕ2, the secular

drift is of such small magnitude compared to the magnitude of the oscillation that it is

virtually undetectable in the plots.

To determine the secular drift in the satellite separation distance, the following simple

technique was used: the separation data for each case (as plotted in the aforementioned

figures) was fed into a routine which calculated the slope between each pair of peaks in

the oscillating data, calculated the slope between each pair of valleys, took the average

of each over the full time span, and then averaged the two slopes. The resulting data

slope was then multiplied by the time span to determine the secular drift. As an example,

for the 320km 30◦ orbit, Figure (4.18) shows the 10-day secular drift as a function of the

ϕ1 separation angle. As mentioned previously, the amount of secular drift seems to be

proportional to the amount of initial separation. To gain a better idea of the relationship,

the secular drift as a percent of the initial separation was plotted with respect to the initial

ϕ1 angle, shown in Figure (4.19). The secular drifts for the ϕ1 case for this orbit remain less

than one percent of the original separation distance for the angular separations examined.
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Figure 4.16. Satellite separation deviation from initial value over 10 days after varying
initial separations in ϕ1
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Figure 4.17. Satellite separation deviation from initial value over 10 days after varying
initial separations in ϕ1 (cont.)

52



0 2 4 6 8 10 12 14
−3500

−3000

−2500

−2000

−1500

−1000

−500

0

500

Phi separation (deg)

D
rif

t o
ve

r 
10

 d
ay

s 
(m

)

Figure 4.18. Secular drift between satellites over 10 days vs. initial separations in ϕ1

for 320km, i = 30◦ orbit
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Figure 4.19. Secular drift (in percentage of initial separation) between satellites over 10
days vs. initial ϕ1 separation for 320km, i = 30◦ orbit
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The distance results for each of the four orbits and each ϕk are included in Appendices

A through D for reference and, in the interest of simplicity and brevity, will not be shown

here. However, Tables 4.1 through 4.4 give a summary of selected results from the drift

analysis survey. There are several important points to note from these data. First, as

shown above, the oscillatory amplitude and secular drift both increase with increasing

initial separation distance; however, the drift as a percentage of the original separation

stays relatively low, being always below 1 percent (and usually below 0.5 percent) for

displacements in ϕ1 and ϕ2 in the cases surveyed. Second, as shown in the tables and in

the figures in the Appendices involving ϕ2, there is a seemingly bounded oscillation with

very little relative secular growth. The oscillation is unavoidable and is a direct result of

the separation of the orbital planes by rotation about the ECI z-axis (recall the example

separation in Figure (4.14)). Third, drift and oscillation after ϕ3 separations seem to be

much more erratic and ill-behaved than after separations in ϕ1 and ϕ2. It is the speculation

of this author that, as alluded to in §4.2.1.3, the very small but nonzero eccentricity causes

a low magnitude oscillation from the change in position of the orbit’s argument of perigee

ωp.
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Table 4.1. Selected drift results of initial displacements in ϕk for 320km, 15◦ orbit over
10 days

Torus Initial Initial Oscillation Drift (m) Drift
angle separation (deg) separation (m) amplitude (m) (percent)

1 0.09 1.049e+004 27.04 1.73 0.01649
1 2.79 3.252e+005 838.2 -186.2 -0.05726
1 7.29 8.493e+005 2186 -1007 -0.1185
1 9.99 1.163e+006 2988 -1243 -0.1069
1 12.69 1.476e+006 3784 -1100 -0.07449
2 0.36 4.209e+004 1378 -7.473 -0.01775
2 5.76 6.732e+005 2.203e+004 281.1 0.04176
2 21.96 2.552e+006 8.358e+004 -2869 -0.1124
2 48.96 5.552e+006 1.818e+005 -2833 -0.05102
2 70.56 7.738e+006 2.534e+005 -4991 -0.06449
2 92.16 9.65e+006 3.161e+005 -9286 -0.09622
2 103 1.048e+007 3.433e+005 -1.012e+004 -0.09651
3 0.36 122.3 59.52 0.7927 0.6483
3 5.76 1941 952 12.56 0.6468
3 21.96 7126 3609 144.2 2.023
3 48.96 1.42e+004 7851 339.8 2.392
3 70.56 1.789e+004 1.095e+004 595.6 3.329
3 92.16 1.967e+004 1.365e+004 -962.7 -4.895
3 103 1.993e+004 1.482e+004 -267.3 -1.341
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Table 4.2. Selected drift results of initial displacements in ϕk for 320km, 30◦ orbit over
10 days

Torus Initial Initial Oscillation Drift (m) Drift
angle separation (deg) separation (m) amplitude (m) (percent)

1 0.09 1.05e+004 19.62 34.41 0.3278
1 0.99 1.155e+005 215.8 314.3 0.2722
1 2.79 3.254e+005 608.4 479.6 0.1474
1 7.29 8.496e+005 1589 -1183 -0.1393
1 9.99 1.164e+006 2175 -2624 -0.2255
1 12.69 1.477e+006 2756 -3350 -0.2268
2 0.36 4.209e+004 5416 221.6 0.5265
2 5.76 6.731e+005 8.656e+004 4463 0.6631
2 21.96 2.552e+006 3.285e+005 1.132e+004 0.4435
2 48.96 5.551e+006 7.148e+005 2.418e+004 0.4356
2 70.56 7.738e+006 9.964e+005 3.278e+004 0.4236
2 92.16 9.65e+006 1.243e+006 3.977e+004 0.4122
2 103 1.048e+007 1.35e+006 4.142e+004 0.3951
3 0.36 105.6 54.32 -0.7253 -0.6869
3 5.76 1662 868.6 -39.27 -2.363
3 21.96 5942 3292 -14.83 -0.2496
3 48.96 1.133e+004 7164 -141.6 -1.249
3 70.56 1.385e+004 9985 209.5 1.513
3 92.16 1.502e+004 1.246e+004 28.76 0.1915
3 103 1.531e+004 1.353e+004 -657.1 -4.291
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Table 4.3. Selected drift results of initial displacements in ϕk for 630km, 15◦ orbit over
10 days

Torus Initial Initial Oscillation Drift (m) Drift
angle separation (deg) separation (m) amplitude (m) (percent)

1 0.09 1.098e+004 25.34 5.025 0.04577
1 0.99 1.208e+005 278.8 40.52 0.03354
1 2.79 3.404e+005 785.5 36.21 0.01064
1 7.29 8.888e+005 2049 -278.7 -0.03135
1 9.99 1.217e+006 2801 -468.8 -0.03851
1 12.69 1.545e+006 3548 -508.8 -0.03293
2 0.36 4.404e+004 1449 104.6 0.2376
2 5.76 7.043e+005 2.317e+004 2052 0.2914
2 21.96 2.67e+006 8.788e+004 5043 0.1889
2 48.96 5.809e+006 1.912e+005 1.305e+004 0.2246
2 70.56 8.096e+006 2.665e+005 1.826e+004 0.2256
2 92.16 1.01e+007 3.323e+005 2.254e+004 0.2233
2 103 1.097e+007 3.61e+005 2.304e+004 0.2101
3 0.36 116.8 57.24 -2.388 -2.046
3 5.76 1853 915.4 2.153 0.1162
3 21.96 6794 3468 -2.579 -0.03796
3 48.96 1.351e+004 7547 146.1 1.081
3 70.56 1.699e+004 1.052e+004 553.3 3.256
3 92.16 1.866e+004 1.312e+004 119.3 0.6394
3 103 1.89e+004 1.425e+004 180.8 0.9568
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Table 4.4. Selected drift results of initial displacements in ϕk for 630km, 30◦ orbit over
10 days

Torus Initial Initial Oscillation Drift (m) Drift
angle separation (deg) separation (m) amplitude (m) (percent)

1 0.09 1.098e+004 18.44 23.72 0.216
1 0.99 1.208e+005 202.8 237.5 0.1966
1 2.79 3.405e+005 571.5 504.9 0.1483
1 7.29 8.891e+005 1492 60.94 0.006854
1 9.99 1.218e+006 2043 -651.9 -0.05353
1 12.69 1.546e+006 2588 -1260 -0.08151
2 0.36 4.403e+004 5694 -46.43 -0.1054
2 5.76 7.042e+005 9.105e+004 -474.3 -0.06735
2 21.96 2.67e+006 3.456e+005 -7336 -0.2748
2 48.96 5.808e+006 7.517e+005 -1.392e+004 -0.2397
2 70.56 8.096e+006 1.048e+006 -1.955e+004 -0.2415
2 92.16 1.01e+007 1.307e+006 -2.451e+004 -0.2428
2 103 1.097e+007 1.419e+006 -2.791e+004 -0.2545
3 0.36 101.3 52.6 -1.822 -1.798
3 5.76 1594 841.3 32.33 2.028
3 21.96 5693 3188 -107.9 -1.895
3 48.96 1.084e+004 6936 -406.4 -3.751
3 70.56 1.323e+004 9669 87.26 0.6597
3 92.16 1.435e+004 1.206e+004 334.6 2.332
3 103 1.465e+004 1.31e+004 70.78 0.4831
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4.2.3 Tight formation detailed analysis. While the behavior of satellites at large

displacements on the torus is interesting, the real promise of KAM formation design seems

to lie in analysis close-proximity formation flight. To further investigate the utility of

a KAM approach to formation design, certain special cases were examined using similar

methodology to that of the previous section. First, a tight formation of five satellites

flying in a 320km, 15◦ orbit was analyzed. The satellites were separated in the torus space

by , δϕ0 = 0.0001◦ in the four cardinal torus 1-2 plane directions, which corresponds to

approximately 11.5 meters of physical separation. Figure (4.20) shows the separations of

the satellites both in the torus space and in physical cartesian space. After defining
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Figure 4.20. Initial position in torus space and cartesian space of satellite cluster for
first close formation analysis in 320km, 15◦ orbit, δϕ = 0.0001◦

the initial conditions of the satellite as such, the trajectory of each satellite was obtained

through numerical integration over a period of 60 days. The position vector for each

satellite was then compared to that of the chief (center) satellite at each time step to

determine the relative motion of the satellite cluster. The drift results for each ancillary

satellite with respect to the chief are shown in Figure (4.21), which shows the distance

of each satellite from the chief, and in Figure (4.22), which shows the drift from the
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Figure 4.21. Cluster distance from chief satellite for first close formation analysis in
320km, 15◦ orbit, δϕ0 = 0.0001◦
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Figure 4.22. Cluster drift from initial separations for first close formation analysis in
320km, 15◦ orbit, δϕ0 = 0.0001◦
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original separation distance. The two satellites separated purely along the ϕ2 axis at

ϕ2 = −0.0001◦, 0.0001◦ show, as expected, the largest oscillation, concurrent with the

previous discussion on the nature of ϕ2 displacements. In general, however, the maximum

secular drift of any satellite away from the chief is approximately 0.02 meters per 60

days, which corresponds to an extraordinarily small drift velocity of approximately 3.86

nanometers per second.

Another cluster investigated was in a somewhat dynamically harsher i = 30◦ orbit at

the same 320km altitude. The satellites were also in the same cruciform configuration in

the torus space as the previous case, with δϕ0 = 0.0001◦ as given on the left plot of Figure

(4.20), with the positions changing in proportion in the physical space according to the

different orbital configuration. The separation plots for this second case are shown in Figs.

(4.23) and (4.24). The maximum secular drift experienced by the satellites in the cluster

is noticeably higher because of the higher inclination, reaching approximately 0.25m over

60 days, corresponding to an average secular drift rate of approximately 48.2 nanometers

per second.

Three additional trials of tight formations were examined: one for a 320km, i = 15◦

with a larger separation of δϕ0 = 0.001◦, one for a higher 630km, i = 15◦ orbit at the

small separation of δϕ0 = 0.0001◦, and one for a 630km, i = 30◦ orbit at a separation of

δϕ0 = 0.001◦. Table 4.5 shows a summary of the results from these runs, and the data

may be seen in graphical form through plots in Appendix E. The table shows that the

highest drift rate occurs in the last case mentioned, which is understandable due to its

higher inclination and larger physical separation; however, the drift rate is still only on the

order of 0.313 µm/s.
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Figure 4.23. Cluster distance from chief satellite for first close formation analysis in
320km, 30◦ orbit, δϕ0 = 0.0001◦
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Figure 4.24. Cluster drift from initial separations for first close formation analysis in
320km, 30◦ orbit, δϕ0 = 0.0001◦
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Table 4.5. Results of tight formation analysis for various orbits and separations
Alt = 320km, i = 15◦, δϕ0 = 0.0001

Sat. No. Initial sep. Avg. Oscillation Drift over Drift
from chief (m) amplitude (m) 60 days (m) rate (m/s)

1 11.66 0.03379 0.01425 2.75e-009
2 11.69 0.3827 -0.01179 -2.275e-009
3 11.66 0.03378 0.01035 1.996e-009
4 11.69 0.3827 -0.01087 -2.097e-009

Alt = 320km, i = 15◦,δϕ0 = 0.001
Sat. No. Initial sep. Avg. Oscillation Drift over Drift

from chief (m) amplitude (m) 60 days (m) rate (m/s)
1 116.6 0.3378 0.1199 2.312e-008
2 116.9 3.827 -0.1161 -2.24e-008
3 116.6 0.3378 0.1164 2.246e-008
4 116.9 3.827 -0.1159 -2.235e-008

Alt = 320km, i = 30◦, δϕ0 = 0.0001
Sat. No. Initial sep. Avg. Oscillation Drift over Drift

from chief (m) amplitude (m) 60 days (m) rate (m/s)
1 11.66 0.03303 0.2361 4.555e-008
2 11.69 1.499 0.1301 2.509e-008
3 11.66 0.03303 0.2378 4.587e-008
4 11.69 1.499 0.128 2.47e-008

Alt = 630km, i = 15◦, δϕ0 = 0.0001
Sat. No. Initial sep. Avg. Oscillation Drift over Drift

from chief (m) amplitude (m) 60 days (m) rate (m/s)
1 12.2 0.03303 0.2361 4.555e-008
2 12.23 1.499 0.1301 2.509e-008
3 12.2 0.03303 0.2378 4.587e-008
4 12.23 1.499 0.128 2.47e-008

Alt = 630km, i = 30◦, δϕ0 = 0.001
Sat. No. Initial sep. Avg. Oscillation Drift over Drift

from chief (m) amplitude (m) 60 days (m) rate (m/s)
1 122 0.3048 1.626 3.137e-007
2 122.3 15.75 1.029 1.985e-007
3 122 0.3048 1.626 3.136e-007
4 122.3 15.75 1.028 1.984e-007
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4.3 Atmospheric drag effects on KAM tori

When one examines only the relative motion between two satellites in circular orbits

on the same KAM torus, atmospheric drag effects do not play an important role, as long as

the satellites are identical in drag mass, cross-sectional area and shape and, if unsymmetric,

tend to fly in the same attitude- these are certainly the case for many groups of satellites of

interest in formation design. However, when positioning of the satellites in an “absolute”

or an Earth-fixed sense is important, which is the case when, for example, a surveillance

satellite must overfly some area of the Earth with some frequency, atmospheric drag begins

to play a more important role in the orbital calculations. Though not the main focus of

this paper, a limited study was performed to determine the effects of atmospheric drag on

the KAM tori of Earth satellites.

Even before beginning any numerical analysis regarding drag, we may derive some

of the its effects in general on the KAM torus by simple intuition. As mentioned in §2.2.2,

the effect of drag on an orbit is a decrease in the semi-major axis through circularization

and, once circularity has been reached, a lowering of the orbital altitude until impact.

Elementary orbital mechanics shows that an orbiting object whose altitude is decreasing

will experience an increase in velocity. We would expect, then, since the satellite is moving

faster, that the fundamental KAM torus frequencies would increase as the orbit decays.

However, the satellite’s descent due to drag is a physical manifestation of energy degeneracy

in the dynamical system; i.e., the system is no longer isoenergetic. This means that the

satellite no longer lies on the KAM torus we have so carefully characterized and calculated,

since one of the fundamental assumptions made in Chapter III involved an isoenergetic

system with a small, conservative perturbation to a Hamiltonian system.

On the surface, it appears that atmospheric drag renders KAM representation of

orbits useless. On the contrary, if the drag force can be characterized well enough, it should

still be possible to gain information from the KAM torus. To very briefly investigate this,

an analysis was performed in which a satellite began in a 320km, 30◦ inclination orbit.

To include the effects of air drag, this author proposes the use of a Rayleigh dissipative

function [14] in terms of the q̇k inserted into the Hamiltonian, so that Hamilton’s functions
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become

q̇k =
δH

δpk

ṗk = −δH
δqk
− χδFR

δq̇k
(4.5)

where χ is a coefficient dependent on spacecraft characteristics and the atmospheric density

given as

χ = ρ
CdA

m
=
ρ

β
(4.6)

and FR is a Rayleigh function

FR =
1
6

(q̇1 + q̇2 + q̇3)
3
2 (4.7)

When integrating Eqns. (4.5) to provide trajectory data, the instantaneous atmospheric

density ρ in (4.6) was calculated at every time step using a basic exponential atmospheric

model for the Earth (c.f. [19] for a more detailed explanation). A more accurate density

model, if available, could obviously be utilized in its place.

A reference trajectory was first integrated over t = [−T, T ] without drag and a KAM

torus constructed for it. Next, the same initial conditions were integrated forwards with

the drag acceleration included. Then, the state vectors of this “drag-perturbed” trajectory

at each time from 1 to 64 time units were extracted. These state vectors were then used as

initial conditions for new forward and backward integrations, again over t = [−T, T ], and

KAM tori constructed for each trajectory. In this way, we have found, in essence, osculating

KAM tori, in that the tori are what would be obtained if one could instantaneously “switch

off” the drag force at any point in a trajectory and analyze the motion of the new orbit.

The tori basis frequencies are necessarily calculated in order to construct new KAM

tori for each state of the drag-perturbed trajectory. The set of the basis frequencies for the

constructed tori then will show the trend in the frequencies as drag acts upon the satellite.

Figures (4.25) through (4.26) show the change in each of the three basis frequencies as found

through the above analysis on a 320km, 30◦ orbit. Since this was purely a demonstrative

investigation, for the sake of computational efficiency, the geopotential expansion was only
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included to order and degree m,n = 4 rather than the usual m,n = 20 limit used elsewhere

throughout this work. It is clear from the figures that the fundamental frequencies display
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Figure 4.25. Change in Ω1 due to drag in a 320km, 30◦ orbit, including geopotential
expansion to m,n = 4

the expected increase due to the lowering of the orbit; also, all three display the same

roughly linear behavior for this relatively short time, though they grow at different rates

proportional to the initial frequency magnitude. The above results serve to illustrate that,

even though the orbit of a satellite acted on by an energy-dissipative force like drag will

not stay on the same KAM torus, the torus evolves in a way consistent with the expected

and observed orbital deterioriation.
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Figure 4.26. Change in Ω2 due to drag in a 320km, 30◦ orbit, including geopotential
expansion to m,n = 4
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Figure 4.27. Change in Ω3 due to drag in a 320km, 30◦ orbit, including geopotential
expansion to m,n = 4
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V. Conclusions

This chapter will posit conclusions derived from the results of the work presented through-

out Chapter IV. Torus construction, its limitations and applicability will be discussed,

followed by the key conclusions of formation design on the torus. Finally, recommenda-

tions for future work will be given.

5.1 Torus Construction

As seen in Chapter IV, the KAM tori derived/calculated for this work have been

utilized to accurately describe the positions of virtual satellites in their orbits to within 0.1

meter over one year in some cases- this obviously demonstrates that KAM is a powerful

tool with some degree of utility in orbital mechanics and design. This section will describe

the limitations of torus construction and thereby postulations regarding its applicability.

5.1.1 Limitations and considerations in the KAM fitting process. As mentioned

above, the methods used in this work to construct KAM tori have yielded promising and

potentially valuable results; these must be tempered, however, by the reality of limitations

inherent in the process and their associated impacts on the potential usefulness of the

system. For example, the results of Chapter IV showed a trend in which tori of orbits

of higher altitudes were determinable to higher accuracy using fewer KAM series terms

than their lower-altitude counterparts sharing the same inclination. However, the opposite

trend was found with regards to changing inclination; as inclination increases, the orbit’s

torus is generally more difficult to obtain to any high degree of accuracy. Indeed, orbits at

both 320km and 630km altitudes were examined by the current author whose inclinations

were as high as 3π/4 ≈ 43◦, the tori of which were only able to be calculated with residuals

on the order of 650km over one year.

This author believes that the phenomenon of KAM tori becoming more difficult to

determine accurately with increasing inclination is directly an effect of the shrinking of

the third basis frequency as seen in Figure (3.6) as i→ i∗, where i∗ ≈ 63.4◦ is the critical

inclination discussed in §3.1.3. As Ω3 falls closer and closer to a zero value, the trajectory

knowledge must be more and more accurate over a longer and longer time to accurately
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determine the basis frequencies with the methodology in Chapter III. In the limit where

i = i∗, the basis frequency set Ω̄ = [Ω1,Ω2,Ω3] would be said to be commensurable (i.e., two

or more elements of the set have a common divisor), violating the diophantine condition

mentioned in [9] and leading to an exacerbated problem of small divisors. In this case,

the torus would be practically incalculable. In this case, however, where |i− i∗| ≈ 0,

it is expected that the torus could be described with reasonable accuracy in terms of

the set of only two fundamental frequencies, Ω̄ = [Ω1,Ω2]. Such an investigation was

beyond the scope of this work, but it was determined that the transition region where

0.0017 rad/s > Ω3 > 0 leads to a severe decline in the accuracy of the results.

Similarly, one also encounters a commensurability issue when two of the Ωk are very

close to low integer multiples of each other, even if they are nowhere close to zero-valued.

This would be most frequently encountered as a relationship between the two largest

frequencies, and would only be soluble with trajectory knowledge of greater accuracy to

resolve the two frequencies

5.1.2 Applicability of KAM theorem. Of pivotal importance in the KAM pro-

cess, and intimately related to the commensurability considerations discussed above, is

the trajectory knowledge of the orbit whose KAM torus is sought. In the current work,

the trajectory knowledge was obtained through numerical integration, which is much more

easily performed than physical on-orbit determination to a high degree of accuracy. In the

author’s estimation, the main limitation on the applicability of KAM torus construction

to-date is the extremely long periods of accurate trajectory knowledge required to create

usable KAM tori. It is indeed quite rare, due to the inherent error in any real-world track-

ing or position determination system and the necessity of spacecraft maneuvering, to know

the true trajectory of a satellite well enough to very accurately implement KAM theorem.

Little has shown the results of such investigations of actual satellites’ tori. Even in the

“ideal” case of numerically integrated data, there is a finite limit of accuracy (as discussed

in Chapter III and above) which casts accuracy bounds on KAM torus determination.
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5.2 KAM Formation Flight

The results of Chapter IV show that an accurate KAM torus for a given orbit can

yield useful fundamental knowledge of the orbit’s behavior, including its major modes of

motion and their frequencies and proportions. Additionally, it was shown that formations

may be configured on the KAM torus in both tight (close-lying) and wide formations to

obtain physical separations with varying levels of relative oscillation and secular drift. In

the survey of wide formations, the satellites generally experienced secular drifts of less than

0.5 percent of the original separations in torus angles ϕ1 and ϕ2 over 10 days, even with

separations of as much as 1-5 million meters. It seems that the amount of secular drift

between satellites and the oscillation distance amplitude is proportional to the amount of

separation, which casts doubt on the utility of this method for designing constellations of

satellites separated by large distances.

The KAM method seems to show promise, however, in genesis of satellite clusters

with small δϕ0. Orbits of satellite clusters separated by ten to one hundred meters ac-

cording to KAM tori showed drift rates in the nanometer to micrometer range over 60

day integration windows. If, in fact, satellites can be placed on a KAM torus with such

angular separations, the low and accurate thrust of electric propulsive devices could easily

overcome such a drift rate.

5.3 Recommendations for Future Study

It is the author’s opinion that, in order to transform KAM theory into a viable tool

for astrodynamicists, certain additional areas in this promising field should be investigated

and characterized. First, a purely informational survey of torus construction for different

altitude and inclination combinations should be performed, determining the steps and basis

frequency number/characteristics required for each type of orbit. The envisioned result of

such an effort would be a sort of database of KAM torus parameters for Earth orbits.

Second, investigation of the possibility of applying KAM torus construction methodology

to orbits of varying eccentricities should be executed. Third, additional work should be

completed with a focus on developing new and more efficient techniques for determining

torus frequencies and torus coefficients – in essence, to search for a more direct map
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M : (q, p)→ (I, ϕ), the ideal map mentioned at the beginning of Chapter III. Such effort

would seek to reduce or eliminate the need for extensive numerical integration and/or

highly accurate trajectory knowledge over exceedingly long times in constructing KAM

torus models for an orbit. Fourth, the problem of maneuvering onto KAM tori should

be investigated. The author is aware of current work with some success in this area,

and feels strongly that this is a vital area of continued research, with the ideal result of

allowing for flight on specified KAM tori in spite of the intrinsically limited precision of

launch and orbital insertion capabilities. Finally, in the area of KAM formation design,

it would be beneficial to fully and extensively characterize the correlation between torus

angle displacements and their associated displacements in the physical space, with a focus

on the ability to “fix” satellites into the desired relative physical positions while harnessing

the drift advantages of their being on the same KAM torus.
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Appendix A. Formation drift survey results, 320km, i = 15◦

0 2 4 6 8 10 12 14
−1400

−1200

−1000

−800

−600

−400

−200

0

200

Phi separation (deg)

D
rif

t o
ve

r 
10

 d
ay

s 
(m

)

Figure A1. Secular drift between satellites over 10 days vs. initial ϕ1 separation for
320km, i = 15◦ orbit

Table A1. Drift results of initial displacements in ϕ1 for 320km, 15◦ orbit over 10 days
Torus Initial Initial Oscillation Drift (m) Drift
angle sep. (deg) separation (m) amplitude (m) (percent)

1 0.09 1.049e+004 27.04 1.73 0.01649
1 0.99 1.154e+005 297.4 -11.37 -0.009852
1 1.89 2.203e+005 567.8 -74.86 -0.03398
1 2.79 3.252e+005 838.2 -186.2 -0.05726
1 3.69 4.301e+005 1108 -334.2 -0.0777
1 4.59 5.35e+005 1378 -504.5 -0.09431
1 5.49 6.398e+005 1648 -684 -0.1069
1 6.39 7.446e+005 1917 -855.5 -0.1149
1 7.29 8.493e+005 2186 -1007 -0.1185
1 8.19 9.54e+005 2454 -1129 -0.1183
1 9.09 1.059e+006 2722 -1199 -0.1133
1 9.99 1.163e+006 2988 -1243 -0.1069
1 10.89 1.268e+006 3254 -1241 -0.09791
1 11.79 1.372e+006 3520 -1184 -0.08628
1 12.69 1.476e+006 3784 -1100 -0.07449
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Figure A2. Secular drift (in percentage of initial separation) between satellites over 10
days vs. initial ϕ1 separation for 320km, i = 15◦ orbit

Table A2. Drift results of initial displacements in ϕ2 for 320km, 15◦ orbit over 10 days
Torus Initial Initial Oscillation Drift (m) Drift
angle sep. (deg) separation (m) amplitude (m) (percent)

2 0.36 4.209e+004 1378 -7.473 -0.01775
2 5.76 6.732e+005 2.203e+004 281.1 0.04176
2 11.16 1.303e+006 4.263e+004 699.2 0.05367
2 16.56 1.93e+006 6.318e+004 -1301 -0.06745
2 21.96 2.552e+006 8.358e+004 -2869 -0.1124
2 27.36 3.169e+006 1.037e+005 -1465 -0.04625
2 32.76 3.778e+006 1.237e+005 -1730 -0.04579
2 38.16 4.38e+006 1.434e+005 -5276 -0.1205
2 43.56 4.971e+006 1.628e+005 -6069 -0.1221
2 48.96 5.552e+006 1.818e+005 -2833 -0.05102
2 54.36 6.12e+006 2.004e+005 -2946 -0.04814
2 59.76 6.675e+006 2.186e+005 -6848 -0.1026
2 65.16 7.214e+006 2.363e+005 -7495 -0.1039
2 70.56 7.738e+006 2.534e+005 -4991 -0.06449
2 75.96 8.245e+006 2.7e+005 -5605 -0.06799
2 81.36 8.733e+006 2.86e+005 -9124 -0.1045
2 86.76 9.202e+006 3.014e+005 -1.025e+004 -0.1114
2 92.16 9.65e+006 3.161e+005 -9286 -0.09622
2 97.56 1.008e+007 3.3e+005 -9012 -0.08942
2 103 1.048e+007 3.433e+005 -1.012e+004 -0.09651
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Table A3. Drift results of initial displacements in ϕ3 for 320km, 15◦ orbit over 10 days
Torus Initial Initial Oscillation Drift (m) Drift
angle sep. (deg) separation (m) amplitude (m) (percent)

3 0.36 122.3 59.52 0.7927 0.6483
3 5.76 1941 952 12.56 0.6468
3 11.16 3723 1843 -65.99 -1.773
3 16.56 5455 2730 113.1 2.073
3 21.96 7126 3609 144.2 2.023
3 27.36 8725 4481 -44.89 -0.5146
3 32.76 1.024e+004 5344 -390.1 -3.81
3 38.16 1.166e+004 6196 -715.9 -6.138
3 43.56 1.299e+004 7034 150.5 1.159
3 48.96 1.42e+004 7851 339.8 2.392
3 54.36 1.53e+004 8653 476.4 3.113
3 59.76 1.629e+004 9439 267.1 1.64
3 65.16 1.715e+004 1.021e+004 -226.4 -1.32
3 70.56 1.789e+004 1.095e+004 595.6 3.329
3 75.96 1.851e+004 1.166e+004 -186.2 -1.006
3 81.36 1.901e+004 1.235e+004 -250.6 -1.319
3 86.76 1.939e+004 1.302e+004 -286.7 -1.478
3 92.16 1.967e+004 1.365e+004 -962.7 -4.895
3 97.56 1.984e+004 1.425e+004 87.19 0.4394
3 103 1.993e+004 1.482e+004 -267.3 -1.341
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Figure A3. Satellite separation deviation from initial value over 10 days after varying
initial separations in ϕ1 for 320km, i = 15◦ orbit
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Figure A4. Satellite separation deviation from initial value over 10 days after varying
initial separations in ϕ1 for 320km, i = 15◦ orbit (contd.)
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Figure A5. Secular drift between satellites over 10 days vs. initial ϕ2 separation for
320km, i = 15◦ orbit
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Figure A6. Secular drift (in percentage of initial separation) between satellites over 10
days vs. initial ϕ2 separation for 320km, i = 15◦ orbit
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Figure A7. Satellite separation deviation from initial value over 10 days after varying
initial separations in ϕ2 for 320km, i = 15◦ orbit
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Figure A8. Satellite separation deviation from initial value over 10 days after varying
initial separations in ϕ2 for 320km, i = 15◦ orbit (contd.)
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Figure A9. Secular drift between satellites over 10 days vs. initial ϕ3 separation for
320km, i = 15◦ orbit
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Figure A10. Secular drift (in percentage of initial separation) between satellites over 10
days vs. initial ϕ3 separation for 320km, i = 15◦ orbit
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Figure A11. Satellite separation deviation from initial value over 10 days after varying
initial separations in ϕ3 for 320km, i = 15◦ orbit
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Figure A12. Satellite separation deviation from initial value over 10 days after varying
initial separations in ϕ3 for 320km, i = 15◦ orbit (contd.)
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Appendix B. Formation drift survey results, 320km, i = 30◦
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Figure B1. Secular drift between satellites over 10 days vs. initial ϕ1 separation for
320km, i = 30◦ orbit

Table B1. Drift results of initial displacements in ϕ1 for 320km, 30◦ orbit over 10 days
Torus Initial Initial Oscillation Drift (m) Drift
angle sep. (deg) separation (m) amplitude (m) (percent)

1 0.09 1.05e+004 19.62 34.41 0.3278
1 0.99 1.155e+005 215.8 314.3 0.2722
1 1.89 2.204e+005 412.1 466.4 0.2116
1 2.79 3.254e+005 608.4 479.6 0.1474
1 3.69 4.303e+005 804.7 354.9 0.08249
1 4.59 5.352e+005 1001 106 0.01981
1 5.49 6.4e+005 1197 -249.5 -0.03898
1 6.39 7.449e+005 1393 -694 -0.09318
1 7.29 8.496e+005 1589 -1183 -0.1393
1 8.19 9.544e+005 1785 -1692 -0.1773
1 9.09 1.059e+006 1980 -2178 -0.2056
1 9.99 1.164e+006 2175 -2624 -0.2255
1 10.89 1.268e+006 2369 -2975 -0.2346
1 11.79 1.373e+006 2563 -3221 -0.2347
1 12.69 1.477e+006 2756 -3350 -0.2268
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Figure B2. Secular drift (in percentage of initial separation) between satellites over 10
days vs. initial ϕ1 separation for 320km, i = 30◦ orbit

Table B2. Drift results of initial displacements in ϕ2 for 320km, 30◦ orbit over 10 days
Torus Initial Initial Oscillation Drift (m) Drift
angle sep. (deg) separation (m) amplitude (m) (percent)

2 0.36 4.209e+004 5416 221.6 0.5265
2 5.76 6.731e+005 8.656e+004 4463 0.6631
2 11.16 1.303e+006 1.675e+005 8481 0.6511
2 16.56 1.929e+006 2.483e+005 1.004e+004 0.5206
2 21.96 2.552e+006 3.285e+005 1.132e+004 0.4435
2 27.36 3.168e+006 4.079e+005 1.391e+004 0.439
2 32.76 3.778e+006 4.865e+005 1.532e+004 0.4055
2 38.16 4.379e+006 5.641e+005 1.593e+004 0.3637
2 43.56 4.971e+006 6.402e+005 1.936e+004 0.3896
2 48.96 5.551e+006 7.148e+005 2.418e+004 0.4356
2 54.36 6.12e+006 7.88e+005 2.66e+004 0.4347
2 59.76 6.674e+006 8.594e+005 2.829e+004 0.4238
2 65.16 7.214e+006 9.289e+005 3.129e+004 0.4338
2 70.56 7.738e+006 9.964e+005 3.278e+004 0.4236
2 75.96 8.244e+006 1.062e+006 3.179e+004 0.3856
2 81.36 8.732e+006 1.125e+006 3.234e+004 0.3703
2 86.76 9.201e+006 1.185e+006 3.606e+004 0.3919
2 92.16 9.65e+006 1.243e+006 3.977e+004 0.4122
2 97.56 1.008e+007 1.298e+006 4.122e+004 0.4091
2 103 1.048e+007 1.35e+006 4.142e+004 0.3951
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Table B3. Drift results of initial displacements in ϕ3 for 320km, 30◦ orbit over 10 days
Torus Initial Initial Oscillation Drift (m) Drift
angle sep. (deg) separation (m) amplitude (m) (percent)

3 0.36 105.6 54.32 -0.7253 -0.6869
3 5.76 1662 868.6 -39.27 -2.363
3 11.16 3159 1681 -151.9 -4.807
3 16.56 4589 2490 40.08 0.8733
3 21.96 5942 3292 -14.83 -0.2496
3 27.36 7211 4088 253.3 3.513
3 32.76 8389 4875 163.7 1.952
3 38.16 9471 5652 -89.62 -0.9463
3 43.56 1.045e+004 6415 298.1 2.852
3 48.96 1.133e+004 7164 -141.6 -1.249
3 54.36 1.211e+004 7898 -51.77 -0.4274
3 59.76 1.279e+004 8613 -410.4 -3.209
3 65.16 1.337e+004 9311 -566 -4.235
3 70.56 1.385e+004 9985 209.5 1.513
3 75.96 1.425e+004 1.064e+004 36.09 0.2533
3 81.36 1.457e+004 1.127e+004 850.5 5.839
3 86.76 1.482e+004 1.187e+004 316.6 2.137
3 92.16 1.502e+004 1.246e+004 28.76 0.1915
3 97.56 1.518e+004 1.301e+004 347.9 2.293
3 103 1.531e+004 1.353e+004 -657.1 -4.291
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Figure B3. Satellite separation deviation from initial value over 10 days after varying
initial separations in ϕ1 for 320km, i = 30◦ orbit
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Figure B4. Satellite separation deviation from initial value over 10 days after varying
initial separations in ϕ1 for 320km, i = 30◦ orbit (contd.)
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Figure B5. Secular drift between satellites over 10 days vs. initial ϕ2 separation for
320km, i = 30◦ orbit
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Figure B6. Secular drift (in percentage of initial separation) between satellites over 10
days vs. initial ϕ2 separation for 320km, i = 30◦ orbit
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Figure B7. Satellite separation deviation from initial value over 10 days after varying
initial separations in ϕ2 for 320km, i = 30◦ orbit
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Figure B8. Satellite separation deviation from initial value over 10 days after varying
initial separations in ϕ2 for 320km, i = 30◦ orbit (contd.)
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Figure B9. Secular drift between satellites over 10 days vs. initial ϕ3 separation for
320km, i = 30◦ orbit
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Figure B10. Secular drift (in percentage of initial separation) between satellites over 10
days vs. initial ϕ3 separation for 320km, i = 30◦ orbit
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Figure B11. Satellite separation deviation from initial value over 10 days after varying
initial separations in ϕ3 for 320km, i = 30◦ orbit
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Figure B12. Satellite separation deviation from initial value over 10 days after varying
initial separations in ϕ3 for 320km, i = 30◦ orbit (contd.)
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Appendix C. Formation drift survey results, 630km, i = 15◦
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Figure C1. Secular drift between satellites over 10 days vs. initial ϕ1 separation for
630km, i = 15◦ orbit

Table C1. Drift results of initial displacements in ϕ1 for 630km, 15◦ orbit over 10 days
Torus Initial Initial Oscillation Drift (m) Drift
angle sep. (deg) separation (m) amplitude (m) (percent)

1 0.09 1.098e+004 25.34 5.025 0.04577
1 0.99 1.208e+005 278.8 40.52 0.03354
1 1.89 2.306e+005 532.2 51.61 0.02238
1 2.79 3.404e+005 785.5 36.21 0.01064
1 3.69 4.501e+005 1039 -4.039 -0.0008974
1 4.59 5.599e+005 1292 -58.9 -0.01052
1 5.49 6.695e+005 1544 -130.1 -0.01943
1 6.39 7.792e+005 1797 -204.2 -0.02621
1 7.29 8.888e+005 2049 -278.7 -0.03135
1 8.19 9.984e+005 2300 -353.2 -0.03538
1 9.09 1.108e+006 2551 -418.5 -0.03778
1 9.99 1.217e+006 2801 -468.8 -0.03851
1 10.89 1.327e+006 3051 -498.5 -0.03757
1 11.79 1.436e+006 3300 -513.2 -0.03574
1 12.69 1.545e+006 3548 -508.8 -0.03293
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Figure C2. Secular drift (in percentage of initial separation) between satellites over 10
days vs. initial ϕ1 separation for 630km, i = 15◦ orbit

Table C2. Drift results of initial displacements in ϕ2 for 630km, 15◦ orbit over 10 days
Torus Initial Initial Oscillation Drift (m) Drift
angle sep. (deg) separation (m) amplitude (m) (percent)

2 0.36 4.404e+004 1449 104.6 0.2376
2 5.76 7.043e+005 2.317e+004 2052 0.2914
2 11.16 1.363e+006 4.485e+004 3744 0.2746
2 16.56 2.019e+006 6.644e+004 4209 0.2085
2 21.96 2.67e+006 8.788e+004 5043 0.1889
2 27.36 3.315e+006 1.091e+005 7678 0.2316
2 32.76 3.953e+006 1.301e+005 9873 0.2498
2 38.16 4.582e+006 1.508e+005 1.005e+004 0.2194
2 43.56 5.201e+006 1.712e+005 1.085e+004 0.2087
2 48.96 5.809e+006 1.912e+005 1.305e+004 0.2246
2 54.36 6.403e+006 2.107e+005 1.477e+004 0.2307
2 59.76 6.983e+006 2.298e+005 1.567e+004 0.2244
2 65.16 7.548e+006 2.484e+005 1.682e+004 0.2228
2 70.56 8.096e+006 2.665e+005 1.826e+004 0.2256
2 75.96 8.626e+006 2.839e+005 1.89e+004 0.2191
2 81.36 9.137e+006 3.007e+005 1.957e+004 0.2142
2 86.76 9.628e+006 3.169e+005 2.126e+004 0.2209
2 92.16 1.01e+007 3.323e+005 2.254e+004 0.2233
2 97.56 1.054e+007 3.47e+005 2.277e+004 0.2159
2 103 1.097e+007 3.61e+005 2.304e+004 0.2101
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Table C3. Drift results of initial displacements in ϕ3 for 630km, 15◦ orbit over 10 days
Torus Initial Initial Oscillation Drift (m) Drift
angle sep. (deg) separation (m) amplitude (m) (percent)

3 0.36 116.8 57.24 -2.388 -2.046
3 5.76 1853 915.4 2.153 0.1162
3 11.16 3552 1771 138.9 3.91
3 16.56 5203 2623 130.2 2.503
3 21.96 6794 3468 -2.579 -0.03796
3 27.36 8315 4308 -106.8 -1.284
3 32.76 9755 5138 -134.5 -1.379
3 38.16 1.111e+004 5955 394 3.547
3 43.56 1.236e+004 6758 401.5 3.248
3 48.96 1.351e+004 7547 146.1 1.081
3 54.36 1.455e+004 8321 -183.6 -1.262
3 59.76 1.548e+004 9076 -222.1 -1.434
3 65.16 1.63e+004 9809 516.8 3.172
3 70.56 1.699e+004 1.052e+004 553.3 3.256
3 75.96 1.757e+004 1.121e+004 513.6 2.922
3 81.36 1.804e+004 1.187e+004 -726.9 -4.029
3 86.76 1.84e+004 1.251e+004 -571.2 -3.104
3 92.16 1.866e+004 1.312e+004 119.3 0.6394
3 97.56 1.882e+004 1.37e+004 388.4 2.064
3 103 1.89e+004 1.425e+004 180.8 0.9568
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Figure C3. Satellite separation deviation from initial value over 10 days after varying
initial separations in ϕ1 for 630km, i = 15◦ orbit
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Figure C4. Satellite separation deviation from initial value over 10 days after varying
initial separations in ϕ1 for 630km, i = 15◦ orbit (contd.)
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Figure C5. Secular drift between satellites over 10 days vs. initial ϕ2 separation for
630km, i = 15◦ orbit

0 20 40 60 80 100 120
0.18

0.2

0.22

0.24

0.26

0.28

0.3

Phi separation (deg)

D
rif

t o
ve

r 
10

 d
ay

s 
(%

 o
f i

ni
t. 

se
p.

)

Figure C6. Secular drift (in percentage of initial separation) between satellites over 10
days vs. initial ϕ2 separation for 630km, i = 15◦ orbit
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Figure C7. Satellite separation deviation from initial value over 10 days after varying
initial separations in ϕ2 for 630km, i = 15◦ orbit
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Figure C8. Satellite separation deviation from initial value over 10 days after varying
initial separations in ϕ2 for 320km, 630km, i = 15◦ (contd.)
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Figure C9. Secular drift between satellites over 10 days vs. initial ϕ3 separation for
630km, i = 15◦ orbit
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Figure C10. Secular drift (in percentage of initial separation) between satellites over 10
days vs. initial ϕ3 separation for 320km, 630km, i = 15◦ orbit
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Figure C11. Satellite separation deviation from initial value over 10 days after varying
initial separations in ϕ3 for 630km, i = 15◦ orbit
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Figure C12. Satellite separation deviation from initial value over 10 days after varying
initial separations in ϕ3 for 630km, i = 15◦ orbit (contd.)
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Appendix D. Formation drift survey results, 630km, i = 30◦
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Figure D1. Secular drift between satellites over 10 days vs. initial ϕ1 separation for
630km, i = 30◦ orbit

Table D1. Drift results of initial displacements in ϕ1 for 630km, 30◦ orbit
Torus Initial Initial Oscillation Drift (m) Drift
angle sep. (deg) separation (m) amplitude (m) (percent)

1 0.09 1.098e+004 18.44 23.72 0.216
1 0.99 1.208e+005 202.8 237.5 0.1966
1 1.89 2.307e+005 387.2 401 0.1739
1 2.79 3.405e+005 571.5 504.9 0.1483
1 3.69 4.503e+005 755.8 542.9 0.1206
1 4.59 5.601e+005 940.1 515.4 0.09203
1 5.49 6.698e+005 1124 418.6 0.0625
1 6.39 7.795e+005 1308 265.3 0.03403
1 7.29 8.891e+005 1492 60.94 0.006854
1 8.19 9.987e+005 1676 -164 -0.01643
1 9.09 1.108e+006 1860 -410.1 -0.03701
1 9.99 1.218e+006 2043 -651.9 -0.05353
1 10.89 1.327e+006 2225 -884.9 -0.06667
1 11.79 1.436e+006 2407 -1092 -0.07603
1 12.69 1.546e+006 2588 -1260 -0.08151
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Figure D2. Secular drift (in percentage of initial separation) between satellites over 10
days vs. initial ϕ1 separation for 630km, i = 30◦ orbit

Table D2. Drift results of initial displacements in ϕ2 for 630km, 30◦ orbit over 10 days
Torus Initial Initial Oscillation Drift (m) Drift
angle sep. (deg) separation (m) amplitude (m) (percent)

2 0.36 4.403e+004 5694 -46.43 -0.1054
2 5.76 7.042e+005 9.105e+004 -474.3 -0.06735
2 11.16 1.363e+006 1.763e+005 -1955 -0.1434
2 16.56 2.019e+006 2.612e+005 -5070 -0.2512
2 21.96 2.67e+006 3.456e+005 -7336 -0.2748
2 27.36 3.315e+006 4.29e+005 -7749 -0.2338
2 32.76 3.953e+006 5.115e+005 -8775 -0.222
2 38.16 4.582e+006 5.93e+005 -1.133e+004 -0.2473
2 43.56 5.201e+006 6.731e+005 -1.326e+004 -0.2549
2 48.96 5.808e+006 7.517e+005 -1.392e+004 -0.2397
2 54.36 6.403e+006 8.286e+005 -1.479e+004 -0.2311
2 59.76 6.983e+006 9.037e+005 -1.615e+004 -0.2313
2 65.16 7.548e+006 9.768e+005 -1.758e+004 -0.2329
2 70.56 8.096e+006 1.048e+006 -1.955e+004 -0.2415
2 75.96 8.626e+006 1.116e+006 -2.179e+004 -0.2526
2 81.36 9.136e+006 1.182e+006 -2.301e+004 -0.2519
2 86.76 9.627e+006 1.246e+006 -2.346e+004 -0.2437
2 92.16 1.01e+007 1.307e+006 -2.451e+004 -0.2428
2 97.56 1.054e+007 1.364e+006 -2.633e+004 -0.2497
2 103 1.097e+007 1.419e+006 -2.791e+004 -0.2545
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Table D3. Drift results of initial displacements in ϕ3 for 630km, 30◦ orbit over 10 days
Torus Initial Initial Oscillation Drift (m) Drift
angle sep. (deg) separation (m) amplitude (m) (percent)

3 0.36 101.3 52.6 -1.822 -1.798
3 5.76 1594 841.3 32.33 2.028
3 11.16 3030 1628 84.19 2.779
3 16.56 4399 2411 64.15 1.459
3 21.96 5693 3188 -107.9 -1.895
3 27.36 6905 3960 -116 -1.679
3 32.76 8030 4722 192.3 2.395
3 38.16 9062 5472 284 3.134
3 43.56 9998 6210 290.5 2.906
3 48.96 1.084e+004 6936 -406.4 -3.751
3 54.36 1.158e+004 7648 -384.6 -3.323
3 59.76 1.222e+004 8342 -3.641 -0.0298
3 65.16 1.277e+004 9016 209.4 1.64
3 70.56 1.323e+004 9669 87.26 0.6597
3 75.96 1.36e+004 1.03e+004 297.4 2.186
3 81.36 1.391e+004 1.091e+004 -90.39 -0.6499
3 86.76 1.415e+004 1.15e+004 64.09 0.4529
3 92.16 1.435e+004 1.206e+004 334.6 2.332
3 97.56 1.451e+004 1.259e+004 -271.5 -1.872
3 103 1.465e+004 1.31e+004 70.78 0.4831
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Figure D3. Satellite separation deviation from initial value over 10 days after varying
initial separations in ϕ1 for 630km, i = 30◦ orbit
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Figure D4. Satellite separation deviation from initial value over 10 days after varying
initial separations in ϕ1 for 630km, i = 30◦ orbit (contd.)
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Figure D5. Secular drift between satellites over 10 days vs. initial ϕ2 separation for
630km, i = 30◦ orbit
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Figure D6. Secular drift (in percentage of initial separation) between satellites over 10
days vs. initial ϕ2 separation for 630km, i = 15◦ orbit
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Figure D7. Satellite separation deviation from initial value over 10 days after varying
initial separations in ϕ2 for 630km, i = 30◦ orbit
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Figure D8. Satellite separation deviation from initial value over 10 days after varying
initial separations in ϕ2 for 320km, 630km, i = 30◦ (contd.)
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Figure D9. Secular drift between satellites over 10 days vs. initial ϕ3 separation for
630km, i = 30◦ orbit
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Figure D10. Secular drift (in percentage of initial separation) between satellites over 10
days vs. initial ϕ3 separation for 320km, 630km, i = 30◦ orbit
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Figure D11. Satellite separation deviation from initial value over 10 days after varying
initial separations in ϕ3 for 630km, i = 30◦ orbit
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Figure D12. Satellite separation deviation from initial value over 10 days after varying
initial separations in ϕ3 for 630km, i = 30◦ orbit (contd.)
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Appendix E. Tight formation analysis results for various orbits
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Figure E1. Initial position in torus space and inertial cartesian space of satellite cluster
for tight formation analysis in 320km, 15◦ orbit, δϕ = 0.0001◦
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Figure E2. Cluster distance from chief satellite for tight formation analysis in 320km,
15◦ orbit, δϕ0 = 0.0001◦
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Figure E3. Cluster drift from initial separations for tight formation analysis in 320km,
15◦ orbit, δϕ0 = 0.0001◦
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Figure E4. Initial position in torus space and inertial cartesian space of satellite cluster
for tight formation analysis in 320km, 15◦ orbit, δϕ = 0.001◦
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Figure E5. Cluster distance from chief satellite for tight formation analysis in 320km,
15◦ orbit, δϕ0 = 0.001◦
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Figure E6. Cluster drift from initial separations for tight formation analysis in 320km,
15◦ orbit, δϕ0 = 0.001◦

118



6698.0603
6698.0604

6698.0605
6698.0606

49.94

49.96

49.98
31.11

31.115

31.12

31.125

31.13

E
C

I Z
 (

km
)

Physical Space

ECI X (km)ECI Y (km)−2 −1 0 1 2

x 10
−4

−2

−1

0

1

2
x 10

−4 Torus Space

phi
1
 (deg)

ph
i 2 (

de
g)

 

 
Chief
Sat 1
Sat 2
Sat 3
Sat 4

Figure E7. Initial position in torus space and inertial cartesian space of satellite cluster
for tight formation analysis in 320km, 30◦ orbit, δϕ = 0.0001◦
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Figure E8. Cluster distance from chief satellite for tight formation analysis in 320km,
30◦ orbit, δϕ0 = 0.0001◦
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Figure E9. Cluster drift from initial separations for tight formation analysis in 320km,
30◦ orbit, δϕ0 = 0.0001◦

7008.0657
7008.0658

7008.0659
7008.066

54.6

54.65

54.7
15.744

15.746

15.748

15.75

15.752

E
C

I Z
 (

km
)

Physical Space

ECI X (km)ECI Y (km)−2 −1 0 1 2

x 10
−4

−2

−1

0

1

2
x 10

−4 Torus Space

phi
1
 (deg)

ph
i 2 (

de
g)

 

 
Chief
Sat 1
Sat 2
Sat 3
Sat 4

Figure E10. Initial position in torus space and inertial cartesian space of satellite cluster
for tight formation analysis in 630km, 15◦ orbit, δϕ = 0.0001◦
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Figure E11. Cluster distance from chief satellite for tight formation analysis in 630km,
15◦ orbit, δϕ0 = 0.0001◦
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Figure E12. Cluster drift from initial separations for tight formation analysis in 630km,
15◦ orbit, δϕ0 = 0.0001◦
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Figure E13. Initial position in torus space and inertial cartesian space of satellite cluster
for tight formation analysis in 630km, 30◦ orbit, δϕ = 0.001◦
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Figure E14. Cluster distance from chief satellite for tight formation analysis in 630km,
30◦ orbit, δϕ0 = 0.001◦
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Figure E15. Cluster drift from initial separations for tight formation analysis in 630km,
30◦ orbit, δϕ0 = 0.001◦
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